當(dāng)x>0時,函數(shù)f(x)=x+
1x
+1
的最小值為
3
3
分析:直接利用基本不等式求解即可.
解答:解:x>0時,函數(shù)f(x)=x+
1
x
+1
≥2
x•
1
x
+1=3
當(dāng)且僅當(dāng)x=
1
x
,x=1時取得等號成立
所以最小值為3
故答案為:3
點(diǎn)評:本題是考查基本不等式的簡單直接應(yīng)用.屬于基礎(chǔ)題.基本不等式求最值時要注意三個原則:一正,即各項的取值為正;二定,即各項的和或積為定值;三相等,即要保證取等號的條件成立.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)x<0時,函數(shù)f(x)=x2+
1
x2
-x-
1
x
的最小值是( 。
A、-
9
4
B、0
C、2
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在(-∞,0)∪(0,+∞)上的奇函數(shù),當(dāng)x>0時,f(x)=log2x.
(Ⅰ)求當(dāng)x<0時,函數(shù)f(x)的表達(dá)式;
(Ⅱ)求滿足f(x+1)<-1的x的取值范圍;
(Ⅲ)已知對于任意的k∈N,不等式2k≥k+1恒成立,求證:函數(shù)f(x)的圖象與直線y=x沒有交點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)x>0時,函數(shù)f(x)=(a2-1)x的值總大于1,則實數(shù)a的取值范圍是
a<-
2
或a>
2
a<-
2
或a>
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題成立的是
①③④
①③④
. (寫出所有正確命題的序號).
①a,bc∈R,a2+b2+c2≥ab+bc+ac;
②當(dāng)x>0時,函數(shù)f(x)=
1
x2
+2x≥2
1
x2
•2x
=2
2
x
,∴當(dāng)且僅當(dāng)x2=2x即x=2時f(x)取最小值;
③當(dāng)x>1時,
x2-x+4
x-1
≥5
;
④當(dāng)x>0時,x+
1
x
+
1
x+
1
x
的最小值為
5
2

查看答案和解析>>

同步練習(xí)冊答案