若函數(shù)f(x)=
1
2
sin2x+sinx
,則f′(x)是(  )
分析:先求導(dǎo),轉(zhuǎn)化為二次函數(shù)型的函數(shù)并利用三角函數(shù)的單調(diào)性求其最值,再利用函數(shù)的奇偶性的定義進(jìn)行判斷其奇偶性即可.
解答:解:∵函數(shù)f(x)=
1
2
sin2x+sinx
,
∴f(x)=cos2x+cosx=2cos2x+cosx-1=2(cosx+
1
4
)2-
9
8
,當(dāng)cosx=-
1
4
時(shí),f(x)取得最小值-
9
8
;當(dāng)cosx=1時(shí),f(x)取得最大值2.
且f(-x)=f(x).即f(x)是既有最大值,又有最小值的偶函數(shù).
故選C.
點(diǎn)評(píng):熟練掌握復(fù)合函數(shù)的導(dǎo)數(shù)、二次函數(shù)型的函數(shù)的最值、三角函數(shù)的單調(diào)性及函數(shù)的奇偶性是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2-aln(2x+1)(x∈(-
12
,1),a>0)

(1)若函數(shù)f(x)在其定義域內(nèi)是減函數(shù),求a的取值范圍;
(2)函數(shù)f(x)是否有最小值?若有最小值,指出其取得最小值時(shí)x的值,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
x3-
1
2
(2a+1)x2+(a2+a)x

(1)若函數(shù)h(x)=
f′(x)
x
為奇函數(shù),求a的值;
(2)若函數(shù)f(x)在x=1處取得極大值,求實(shí)數(shù)a的值;
(3)若a≥0,求f(x)在區(qū)間[0,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=
x
x+1
,則f(
1
2
)=
1
3
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
x3+
1
2
(a+2)x2+ax
,x∈R,a∈R.
(Ⅰ)若f′(0)=-2,求函數(shù)f(x)的極值;
(Ⅱ)若函數(shù)f(x)在(1,2)上單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=4x2-kx+12.
(1)若函數(shù)f(x)在區(qū)間[5,+∞)是增函數(shù),求常數(shù)k的取值范圍;
(2)若不等式f(x)<4x的解為1<x<3,求常數(shù)k的值;
(3)若函數(shù)f(x)在區(qū)間[5,20]上的最大值為12,求常數(shù)k的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案