設F是橢圓+=1的右焦點,且橢圓上至少有21個不同的點Pi(i=1,2,3,…),使|FP1|,|FP2|,|FP3|,…組成公差為d的等差數(shù)列,則d的取值范圍為_______.

解析:由橢圓的性質(zhì)知a=,c=1,

-1≤|FPi|≤+1.

∴||FP21|-|FP1||=|20d|≤|(+1)-(-1)|.

∴|d|≤且d≠0.

∴d∈[-,0)∪(0,]

答案:[-,0)∪(0,].

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
1
2
,且經(jīng)過點P(1,
3
2
).
(1)求橢圓C的方程;
(2)設F是橢圓C的右焦點,M為橢圓上一點,以M為圓心,MF為半徑作圓M.問點M滿足什么條件時,圓M與y軸有兩個交點?
(3)設圓M與y軸交于D、E兩點,求點D、E距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆湖北長陽自治縣第一中學高二下學期期中理科數(shù)學試卷(解析版) 題型:解答題

已知橢圓C (ab>0)的離心率為,且經(jīng)過點P(1,)。

(1)求橢圓C的方程;

(2)設F是橢圓C的右焦點,M為橢圓上一點,以M為圓心,MF為半徑作圓M。問點M滿足什么條件時,圓My軸有兩個交點?

(3)設圓My軸交于DE兩點,求點D、E距離的最大值。   

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江蘇省高三第一學期第二次階段考試數(shù)學 題型:解答題

已知橢圓C:+=1(ab>0)的離心率為,且經(jīng)過點P(1,)。

(1)求橢圓C的方程;

(2)設F是橢圓C的右焦點,M為橢圓上一點,以M為圓心,MF為半徑作圓M。問點M滿足什么條件時,圓My軸有兩個交點?

(3)設圓My軸交于D、E兩點,求點DE距離的最大值。

 

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

16.設F是橢圓+=1的右焦點,且橢圓上至少有21個不同的點Pii=1,2,3,…),使|FP1|,|FP2|,|FP3|,…組成公差為d的等差數(shù)列,則d的取值范圍為            .

查看答案和解析>>

同步練習冊答案