6.已知集合M=$\left\{{x\left|{\frac{x^2}{16}+\frac{y^2}{9}=1}\right.}\right\},N=\left\{{y\left|{\frac{x}{4}+\frac{y}{3}=1}\right.}\right\}$,則M∩N=( 。
A.B.{(4,0),(0,3)}C.{4,3}D.[-4,4]

分析 聯(lián)立M與N中兩方程

解答 解:由M中$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1,得到-4≤x≤4,即M=[-4,4],
由N中$\frac{x}{4}$+$\frac{y}{3}$=1,得到y(tǒng)∈R,即N=R,
則M∩N=[-4,4],
故選:D.

點(diǎn)評 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,AB是⊙O的直徑,BE為⊙O的切線,點(diǎn)C為⊙O上不同于A、B的一點(diǎn),AD為∠BAC的平分線,且分別與BC交于H,與⊙O交于D,與BE交于E,連接BD、CD.
(Ⅰ)求證:∠DBE=∠DBC;
(Ⅱ)求證:AH•BH=AE•HC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.直線在y軸上的截距是-3,且傾斜角為135°,則直線的方程為x+y+3=0.(寫成一般式)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓錐曲線C的極坐標(biāo)方程為${ρ^2}=\frac{12}{{3+{{sin}^2}θ}}$,定點(diǎn)$A(0,-\sqrt{3})$,F(xiàn)1,F(xiàn)2是圓錐曲線C的左、右焦點(diǎn).直線經(jīng)過點(diǎn)F1且平行于直線AF2
(Ⅰ)求圓錐曲線C和直線的直角坐標(biāo)方程;
(Ⅱ)若直線與圓錐曲線C交于M,N兩點(diǎn),求|F1M|•|F1N|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.當(dāng)點(diǎn)P(m,n)為圓x2+(y-2)2=1上任意一點(diǎn)時(shí),不等式m+n+c≥1恒成立,則c的取值范圍是( 。
A.c≥$\sqrt{2}$-1B.c≤$\sqrt{2}$-1C.-1-$\sqrt{2}$≤c$≤\sqrt{2}-1$D.$\sqrt{2}$-1≤c≤$\sqrt{2}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.C${\;}_{2n}^{2}$+C${\;}_{2n}^{4}$+…+C${\;}_{2n}^{2k}$+…+C${\;}_{2n}^{2n}$ 的值為( 。
A.22n-1-1B.22n-1C.2n-1D.2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.以下四個(gè)命題
①從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每5分鐘從中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測,這樣的抽樣是分層抽樣;
②樣本方差反映了樣本數(shù)據(jù)與樣本平均值的偏離程度;
③在回歸分析模型中,殘差平方和越小,說明模型的擬合效果越好;
④在回歸直線方程$\widehat{y}$=0.1x+10中,當(dāng)解釋變量x每增加一個(gè)單位時(shí),預(yù)報(bào)變量$\widehat{y}$增加0.1個(gè)單位.
其中正確的是( 。
A.②③④B.①③④C.①②③D.①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,三棱柱ABC-A1B1C1的側(cè)棱AA1⊥底面ABC,∠ACB=90°,E是棱CC1的中點(diǎn),F(xiàn)是AB的中點(diǎn),AC=BC=1,AA1=2.
(1)求證:CF∥平面AB1E;
(2)求點(diǎn)C到平面AB1E的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.(1)等差數(shù)列{an}中,a8=6,a10=0,求{an}的通項(xiàng)公式an及前n項(xiàng)和Sn,并指出Sn取得最大值時(shí)n的值;
(2)等比數(shù)列{an}中,${a_1}=\frac{1}{2}$,a4=4,求數(shù)列{an}的通項(xiàng)公式an及前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊答案