已知正實數(shù)x,y,z滿足x2+y2+z2=4,則
2
xy+yz的最大值為
 
考點:二維形式的柯西不等式
專題:計算題,不等式的解法及應(yīng)用
分析:由于1=x2+y2+z2=(x2+
2
3
y2)+(
1
3
y2+z2),利用基本不等式,即可求出
2
xy+yz的最大值.
解答: 解:由于1=x2+y2+z2=(x2+
2
3
y2)+(
1
3
y2+z2)≥2
2
3
xy+2
1
3
yz=
2
3
3
2
xy+yz)
2
xy+yz≤
3
2
,
2
xy+yz的最大值為
3
2
,
故答案為:
3
2
點評:本題考查求
2
xy+yz的最大值,考查基本不等式的運用,正確運用基本不等式是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一幾何體三視圖為如圖所示的三個直角三角形,且該幾何體所有棱中最長棱為1,且滿足a+
3
b+c=2,則c的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a2+b2=1,x2+y2=1,求ax+by的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
e1
,
e2
是夾角為
π
3
的兩個單位向量,
a
=2
e1
+
e2
,
b
=k
e1
+2
e2

(1)若
a
b
,求實數(shù)k的值;
(2)若k=-3,求
a
b
的夾角θ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱柱ABCD-A1B1C1D1中,AA1⊥面ABCD,四邊形ABCD為梯形,AD∥BC,且AD=3BC,過A1,C,D三點的平面記為α,BB1與α的交點為Q,則
B1Q
QB
為( 。
A、1
B、2
C、3
D、與
AD
AA1
的值有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F是雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的焦點,A是相應(yīng)的頂點,P是y軸上的點,滿足∠FPA=α,則雙曲線的離心率的最小值為(  )
A、
1
sinα
B、
1
cosα
C、
1+sinα
1-sinα
D、
1+cosα
1-cosα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)在R上有定義,對于任一給定的正數(shù)p,定義函數(shù)fp(x)=
f(x),f(x)≤p
p,f(x)>p
,則稱函數(shù)fp(x)為f(x)的“p界函數(shù)”,若給定函數(shù)f(x)=x2-2x-2,p=1,則下列結(jié)論成立的是(  )
A、fp[f(0)]=f[fp(0)]
B、fp[f(1)]=f[fp(1)]
C、fp[f(2)]=fp[fp(2)]
D、f[f(-2)]=fp[fp(-2)]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c∈R,且a+b+c=2,a2+2b2+3c2=4,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m∈(b,a),且m≠0,
1
m
的取值范圍是(
1
a
,
1
b
),則實數(shù)a,b滿足
 

查看答案和解析>>

同步練習(xí)冊答案