【題目】如圖是正四面體的平面展開(kāi)圖,分別是的中點(diǎn),在這個(gè)正四面體中:①平行;②為異面直線;③成60°角;④垂直.以上四個(gè)命題中,正確命題的個(gè)數(shù)是( )

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】分析:正四面體的平面展開(kāi)圖復(fù)原為正四面體A(B、C)﹣DEF,

,依題意,MN∥AF,而DEAF異面,從而可判斷DEMN不平行;

,假設(shè)BDMN共面,可得A、D、E、F四點(diǎn)共面,導(dǎo)出矛盾,從而可否定假設(shè),肯定BDMN為異面直線;

,依題意知,GH∥AD,MN∥AF,∠DAF=60°,于是可判斷GHMN60°角;

,連接GF,那么A點(diǎn)在平面DEF的射影肯定在GF上,通過(guò)線面垂直得到線線垂直.

詳解:將正四面體的平面展開(kāi)圖復(fù)原為正四面體A(B、C)﹣DEF,如圖:

對(duì)于①,M、N分別為EF、AE的中點(diǎn),則MN∥AF,而DEAF異面,故DEMN不平行,故錯(cuò)誤;

對(duì)于②,BDMN為異面直線,正確(假設(shè)BDMN共面,則A、D、E、F四點(diǎn)共面,與ADEF為正四面體矛盾,故假設(shè)不成立,故BDMN異面);

對(duì)于,依題意,GH∥AD,MN∥AF,∠DAF=60°,故GHMN60°角,故正確;

對(duì)于,連接GF,A點(diǎn)在平面DEF的射影A1GF上,∴DE⊥平面AGF,DE⊥AF,

AF∥MN,∴DEMN垂直,故正確.

綜上所述,正確命題的序號(hào)是②③④,

故答案為:②③④.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,

1)當(dāng)時(shí),試比較的大小關(guān)系;

2)猜想的大小關(guān)系,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校運(yùn)動(dòng)會(huì)的立定跳遠(yuǎn)和30秒跳繩兩個(gè)單項(xiàng)比賽分成預(yù)賽和決賽兩個(gè)階段.下表為10名學(xué)生的預(yù)賽成績(jī),其中有三個(gè)數(shù)據(jù)模糊.

學(xué)生序號(hào)

1

2

3

4

5

6

7

8

9

10

立定跳遠(yuǎn)(單位:米)

1.96

1.92

1.82

1.80

1.78

1.76

1.74

1.72

1.68

1.60

30秒跳繩(單位:次)

63

a

75

60

63

72

70

a1

b

65

在這10名學(xué)生中,進(jìn)入立定跳遠(yuǎn)決賽的有8人,同時(shí)進(jìn)入立定跳遠(yuǎn)決賽和30秒跳繩決賽的有6人,則

A2號(hào)學(xué)生進(jìn)入30秒跳繩決賽

B5號(hào)學(xué)生進(jìn)入30秒跳繩決賽

C8號(hào)學(xué)生進(jìn)入30秒跳繩決賽

D9號(hào)學(xué)生進(jìn)入30秒跳繩決賽

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)求的極值;

(Ⅱ)當(dāng)時(shí),設(shè),求證:曲線存在兩條斜率為且不重合的切線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是菱形,,為等邊三角形,是線段上的一點(diǎn),且平面.

(1)求證:的中點(diǎn);

(2)若的中點(diǎn),連接,,,平面平面,,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某片森林原來(lái)面積為a,計(jì)劃每年砍伐的森林面積是上一年年末森林面積的p%,當(dāng)砍伐到原來(lái)面積的一半時(shí),所用時(shí)間是10年,已知到2018年年末,森林剩余面積為原來(lái)面積的,為保護(hù)生態(tài)環(huán)境,森林面積至少要保留原來(lái)面積的.

1)求每年砍伐面積的百分比P%;

2)到2018年年末,該森林已砍伐了多少年?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-5:不等式選講

設(shè)函數(shù).

(Ⅰ)求的最小值及取得最小值時(shí)的取值范圍;

(Ⅱ)若集合,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知復(fù)數(shù)滿足,的虛部為2

1)求復(fù)數(shù)

2)設(shè)在復(fù)平面上對(duì)應(yīng)點(diǎn)分別為,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司計(jì)劃購(gòu)買1臺(tái)機(jī)器,該種機(jī)器使用三年后即被淘汰.機(jī)器有一易損零件,在購(gòu)進(jìn)機(jī)器時(shí),可以額外購(gòu)買這種零件作為備件,每個(gè)200.在機(jī)器使用期間,如果備件不足再購(gòu)買,則每個(gè)500.現(xiàn)需決策在購(gòu)買機(jī)器時(shí)應(yīng)同時(shí)購(gòu)買幾個(gè)易損零件,為此搜集并整理了100臺(tái)這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖:

x表示1臺(tái)機(jī)器在三年使用期內(nèi)需更換的易損零件數(shù),y表示1臺(tái)機(jī)器在購(gòu)買易損零件上所需的費(fèi)用(單位:元), 表示購(gòu)機(jī)的同時(shí)購(gòu)買的易損零件數(shù).

=19,yx的函數(shù)解析式;

若要求需更換的易損零件數(shù)不大于的頻率不小于0.5,的最小值;

假設(shè)這100臺(tái)機(jī)器在購(gòu)機(jī)的同時(shí)每臺(tái)都購(gòu)買19個(gè)易損零件,或每臺(tái)都購(gòu)買20個(gè)易損零件,分別計(jì)算這100臺(tái)機(jī)器在購(gòu)買易損零件上所需費(fèi)用的平均數(shù),以此作為決策依據(jù),購(gòu)買1臺(tái)機(jī)器的同時(shí)應(yīng)購(gòu)買19個(gè)還是20個(gè)易損零件?

查看答案和解析>>

同步練習(xí)冊(cè)答案