已知數(shù)列{}的前n項和 (n為正整數(shù))。
(1)令,求證數(shù)列{}是等差數(shù)列,并求數(shù)列{}的通項公式;
(2)令,,求并證明:<3.
(1)(2)詳見解析.

試題分析:(1)已知,一般利用進(jìn)行化簡條件,當(dāng)時,,,又數(shù)列是首項和公差均為1的等差數(shù)列,于是.(2)由(1)得,是等差乘等比型,所以其和求法為“錯位相減法”, 即得.顯然有<3.
試題解析:(1)在中,令n=1,可得,即      1
當(dāng)時,,
                 4
                         5
          6
數(shù)列是首項和公差均為1的等差數(shù)列          7
于是             9
(2)由(1)得,所以

         10
由①-②得

   所以                  14
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知是各項為不同的正數(shù)的等差數(shù)列,成等差數(shù)列,又
(1)證明:為等比數(shù)列;
(2)如果數(shù)列前3項的和為,求數(shù)列的首項和公差;
(3)在(2)小題的前題下,令為數(shù)列的前項和,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知為等差數(shù)列,,其前n項和為,若,
(1)求數(shù)列的通項;(2)求的最小值,并求出相應(yīng)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列的前項和,且滿足.
(1)求數(shù)列的通項.
(2)若數(shù)列滿足,為數(shù)列{}的前項和,求證.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知等差數(shù)列{an}的前n項和為Sn,S7=49,a4和a8的等差中項為2.
(1)求an及Sn;
(2)證明:當(dāng)n≥2時,有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

等差數(shù)列{an}的前項和為Sn.已知S3=,且S1,S2,S4成等比數(shù)列,則{an}的通項式為(   )
A.2n
B.2n-1
C.2n+1或3
D.2n-1或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

對于數(shù)列,規(guī)定為數(shù)列的一階差分?jǐn)?shù)列,其中
對于正整數(shù),規(guī)定階差分?jǐn)?shù)列,其中.若數(shù)列,,且滿足,則         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在等差數(shù)列中,若,則等于
A.45B.75C.180D.300

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

等差數(shù)列的前項和為,若,,則下列結(jié)論正確的是(     )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案