某學(xué)校隨機(jī)抽取部分新生調(diào)查其上學(xué)路上所需時(shí)間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),其中,上學(xué)路上所需時(shí)間的范圍是,樣本數(shù)據(jù)分組為,,,.

(1)求直方圖中的值;
(2)如果上學(xué)路上所需時(shí)間不少于60分鐘的學(xué)生可申請(qǐng)?jiān)趯W(xué)校住宿,請(qǐng)估計(jì)學(xué)校1000名新生中有多少名學(xué)生可以申請(qǐng)住宿;
(3)現(xiàn)有6名上學(xué)路上時(shí)間小于分鐘的新生,其中2人上學(xué)路上時(shí)間小于分鐘. 從這6人中任選2人,設(shè)這2人中上學(xué)路上時(shí)間小于分鐘人數(shù)為,求的分布列和數(shù)學(xué)期望.

(1)0.025 (2)120  (3)

解析試題分析:
(1)根據(jù)頻率分布直方圖可以得到組距,而頻率分布直方圖的縱坐標(biāo)與組距之積為頻率,各組頻率之和為1即可得到x的值.
(2)根據(jù)頻率分布直方圖求出上學(xué)路上所需時(shí)間不少于60分鐘的學(xué)生的頻率,頻率乘以總?cè)藬?shù)即可得到可以留宿學(xué)生的人數(shù).
(3)根據(jù)題意可得X的取值為0,1,2,首先利用組合數(shù)計(jì)算6選2人無序的基本事件數(shù),再利用組合數(shù)求的X分別為0,1,2,時(shí)的基本事件數(shù),根據(jù)古典概型的概率計(jì)算公式即可得到相應(yīng)的概率,從而得到分布列,X的值與對(duì)應(yīng)的概率乘積之和即為期望.
試題解析:
(1)由直方圖可得:
.
所以 .           2分
(2)新生上學(xué)所需時(shí)間不少于60分鐘的頻率為:
             4分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/06/a/wgxju1.png" style="vertical-align:middle;" />
所以名新生中有名學(xué)生可以申請(qǐng)住宿.      6分
(3)的可能取值為0,1,2.              7分
所以的可能取值為           7分
 
 
所以的分布列為:


0[來源:學(xué)|科|網(wǎng)]
1
2




         11分
            12分
考點(diǎn):古典概型 頻率分布直方圖 頻率 分布列 期望

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

小明家訂了一份報(bào)紙,寒假期間他收集了每天報(bào)紙送達(dá)時(shí)間的數(shù)據(jù),并繪制成頻率分布直方圖,如圖所示.

(1)根據(jù)圖中的數(shù)據(jù)信息,寫出眾數(shù);
(2)小明的父親上班離家的時(shí)間在上午之間,而送報(bào)人每天在時(shí)刻前后
半小時(shí)內(nèi)把報(bào)紙送達(dá)(每個(gè)時(shí)間點(diǎn)送達(dá)的可能性相等).
①求小明的父親在上班離家前能收到報(bào)紙(稱為事件)的概率;
②求小明的父親周一至周五在上班離家前能收到報(bào)紙的天數(shù)的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一汽車廠生產(chǎn)、、三類轎車,每類轎車均有舒適型和標(biāo)準(zhǔn)型兩種型號(hào),某月的產(chǎn)量如下表(單位:輛)

 
轎車
轎車
轎車
舒適型



標(biāo)準(zhǔn)型



按類型分層抽樣的方法在這個(gè)月生產(chǎn)的轎車中抽取輛,其中有類轎車輛.
(1)求的值;
(2)用分層抽樣的方法在類轎車中抽取一個(gè)容量為的樣本.將該樣本看成一個(gè)總體,從中任取輛,求至少有輛舒適型轎車的概率;
(3)用隨機(jī)抽樣的方法從類舒適型轎車中抽取輛,經(jīng)檢測(cè)它們的得分如下:、、、、、.把這輛轎車的得分看作一個(gè)總體,從中任取一個(gè)數(shù),求該數(shù)與樣本平均數(shù)之差的絕對(duì)值
不超過的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某校100名學(xué)生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].

(1) 求圖中a的值;
(2) 根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生語文成績的平均分;
(3) 若這100名學(xué)生語文成績某些分?jǐn)?shù)段的人數(shù)(x)與數(shù)學(xué)成績相應(yīng)分?jǐn)?shù)段的人數(shù)(y)之比如下表所示,求數(shù)學(xué)成績?cè)赱50,90)之外的人數(shù).

分?jǐn)?shù)段
[50,60)
[60,70)
[70,80)
[80,90)
x∶y
1∶1
2∶1
3∶4
4∶5
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知一組數(shù)據(jù)的頻率分布直方圖如下.求眾數(shù)、中位數(shù)、平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某班主任對(duì)全班50名學(xué)生進(jìn)行了作業(yè)量多少的調(diào)查,喜歡玩電腦游戲的同學(xué)認(rèn)為作業(yè)多的有18人,認(rèn)為作業(yè)不多的有9人,不喜歡玩電腦游戲的同學(xué)認(rèn)為作業(yè)多的有8人,認(rèn)為作業(yè)不多的有15人.
(1)根據(jù)以上數(shù)據(jù)建立一個(gè)2×2的列聯(lián)表.
(2)有多大的把握認(rèn)為“喜歡玩電腦游戲與認(rèn)為作業(yè)多有關(guān)系”?
(參考數(shù)值:≈5.059)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某校從高一年級(jí)學(xué)生中隨機(jī)抽取40名學(xué)生,將他們的期中考試數(shù)學(xué)成績(滿分100分,成績均為不低于40分的整數(shù))分成六段:[40,50),[50,60),…,[90,100]后得到如圖所示的頻率分布直方圖.

(1)求圖中實(shí)數(shù)a的值;
(2)若該校高一年級(jí)共有學(xué)生640人,試估計(jì)該校高一年級(jí)期中考試數(shù)學(xué)成績不低于60分的人數(shù);
(3)若從數(shù)學(xué)成績?cè)赱40,50)與[90,100]兩個(gè)分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取2名學(xué)生,求這2名學(xué)生的數(shù)學(xué)成績之差的絕對(duì)值不大于10的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某電視臺(tái)舉辦青年歌手大獎(jiǎng)賽,有10名評(píng)委打分,已知甲、乙兩名選手演唱后的打分情況如莖葉圖所示:


 

6 4 3
9
1 5
8 7 7 5 4 2
8
0 1 3 6 6 8 8 9
9
7
 
(1)從統(tǒng)計(jì)的角度,你認(rèn)為甲與乙比較,演唱水平怎樣?
(2)現(xiàn)場(chǎng)有3名點(diǎn)評(píng)嘉賓A、B、C,每位選手可以從中選2位進(jìn)行指導(dǎo),若選手選每位點(diǎn)評(píng)嘉賓的可能性相等,求甲乙兩選手選擇的點(diǎn)評(píng)嘉賓恰重復(fù)一人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了讓學(xué)生了解更多“奧運(yùn)會(huì)”知識(shí),某中學(xué)舉行了一次“奧運(yùn)知識(shí)競(jìng)賽”,共有800名學(xué)生參加了這次競(jìng)賽. 為了解本次競(jìng)賽成績情況,從中抽取了部分學(xué)生的成績(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì).請(qǐng)你根據(jù)尚未完成并有局部污損的頻率分布表,解答下列問題:

分組
頻數(shù)
頻率
60.5~70.5
 
0.16
70.5~80.5
10
 
80.5~90.5
18
0.36
90.5~100.5
 
 
合計(jì)
50
 
 
(1)若用系統(tǒng)抽樣的方法抽取50個(gè)樣本,現(xiàn)將所有學(xué)生隨機(jī)地編號(hào)為000,001,002,…799, 試寫出第二組第一位學(xué)生的編號(hào);
(2)填充頻率分布表的空格(將答案直接填在表格內(nèi)) ,并作出頻率分布直方圖;
(3)若成績?cè)?5.5~95.5分的學(xué)生為二等獎(jiǎng),問參賽學(xué)生中獲得二等獎(jiǎng)的約多少人?

查看答案和解析>>

同步練習(xí)冊(cè)答案