已知直線l:y=kx+k+1,拋物線C:y2=4x,和定點M(1,1).

(1)當直線經(jīng)過拋物線焦點F時,求點M關于直線l的對稱點N的坐標,并判斷點N是否在拋物線C上

(2)當k變化(k≠0)且直線l與拋物線C有公共點時,設點P(a,1)關于直線l的對稱點為Q(x0,y0),求x0關于k的函數(shù)關系式x0=f(k).并求P與M重合時,x0的取值范圍

答案:
解析:

  由焦點F(1,0)在l上,得k=-,∴l:y=-x+---1分

  設點N(m,n),則有:,---2分

  解得,∴N(,-),---2分

  ∵≠(-)2,∴N點不在拋物線C上.---2分

  (2)把直線方程代入拋物線方程得:k2x2+2(k2+k-2)x+(k+1)2=0,

  ∵相交,∴△=4[(k+2)(k-1)]2-4k2(k+1)2=6(-k2-k+1)≥0,

  解得≤k≤且k≠0.---2分

  由對稱得,

  解得x0(≤k≤,且k≠0).---2分

  當P與M重合時,a=1,

  ∴f(k)=x0=-3+(≤k≤,且k≠0),-

  ∵函數(shù)x0=f(k)(k∈R)是偶函數(shù),且k>0時單調(diào)遞減.

  ∴當k=時,(x0)min,,

  ∴x0∈[,1).3分


練習冊系列答案
相關習題

科目:高中數(shù)學 來源:黑龍江省哈師大附中2011-2012學年高二上學期期中考試數(shù)學理科試題 題型:044

已知直線l:y=kx+1與圓C:x2+y2-4x-6y+12=0相交于M,N兩點,

(1)求k的取值范圍;

(2)若O為坐標原點,且·=12,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源:浙江省嘉興市第一中學2011-2012學年高二下學期摸底試卷數(shù)學理科試題 題型:044

已知直線l:y=kx+1與圓C:(x-2)2+(y-3)2=1相交于A,B兩點.

(Ⅰ)求弦AB的中點M的軌跡方程;

(Ⅱ)若O為坐標原點,S(k)表示△OAB的面積,f(k)=[S(k)]2,求f(k)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:浙江省杭州市2007年第二次高考科目教學質(zhì)量檢測數(shù)學試題卷(理科) 題型:044

已知直線l:y=kx+k+1,拋物線C:y2=4x,和定點M(1,1).

(1)當直線經(jīng)過拋物線焦點F時,求點M關于直線l的對稱點N的坐標,并判斷點N是否在拋物線C上

(2)當k變化(k¹ 0)且直線l與拋物線C有公共點時,設點P(a,1)關于直線l的對稱點為Q(x0,y0),求x0關于k的函數(shù)關系式x0=f(k).并求P與M重合時,x0的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆山西省晉中市高二下學期期中考試文科數(shù)學試卷(解析版) 題型:解答題

已知直線lykx+2(k為常數(shù))過橢圓=1(ab>0)的上頂點B和左焦點F,直線l被圓x2y2=4截得的弦長為d.

(1)若d=2,求k的值;

(2)若d,求橢圓離心率e的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江西省高三下學期第一次月考理科數(shù)學試卷 題型:解答題

已知平面上的動點P(x,y)及兩定點A(-2,0),B(2,0),直線PAPB的斜率分別是k1,k2,且k1·k2=-.

 (1)求動點P的軌跡C的方程;

(2)已知直線lykxm與曲線C交于MN兩點,且直線BMBN的斜率都存在,并滿足kBM·kBN=-,求證:直線l過原點.

 

查看答案和解析>>

同步練習冊答案