已知函數(shù)數(shù)學公式在[1,+∞)上為增函數(shù),且θ∈(0,π),數(shù)學公式,m∈R.
(1)求θ的值;
(2)若f(x)-g(x)在[1,+∞)上為單調(diào)函數(shù),求m的取值范圍;
(3)設數(shù)學公式,若在[1,e]上至少存在一個x0,使得f(x0)-g(x0)>h(x0)成立,求m的取值范圍.

解:(1)由題意,≥0在[1,+∞)上恒成立,即
∵θ∈(0,π),∴sinθ>0.故sinθ•x-1≥0在[1,+∞)上恒成立,只須sinθ•1-1≥0,
即sinθ≥1,只有sinθ=1.結(jié)合θ∈(0,π),得
(2)由(1),得f(x)-g(x)=

∵f(x)-g(x)在其定義域內(nèi)為單調(diào)函數(shù),
∴mx2-2x+m≥0或者mx2-2x+m≤0在[1,+∞)恒成立.mx2-2x+m≥0等價于m(1+x2)≥2x,即
,(max=1,∴m≥1.mx2-2x+m≤0等價于m(1+x2)≤2x,即
在[1,+∞)恒成立,而∈(0,1],m≤0.
綜上,m的取值范圍是(-∞,0]∪[1,+∞).
(3)構(gòu)造F(x)=f(x)-g(x)-h(x),
當m≤0時,x∈[1,e],,,
所以在[1,e]上不存在一個x0,使得f(x0)-g(x0)>h(x0)成立.
當m>0時,
因為x∈[1,e],所以2e-2x≥0,mx2+m>0,
所以(F(x))'>0在x∈[1,e]恒成立.
故F(x)在[1,e]上單調(diào)遞增,,只要,
解得
故m的取值范圍是
分析:(1)由題意可知.由θ∈(0,π),知sinθ>0.再由sinθ≥1,結(jié)合θ∈(0,π),可以得到θ的值.
(2)由題設條件知.mx2-2x+m≥0或者mx2-2x+m≤0在[1,+∞)恒成立.由此知,由此可知m的取值范圍.
(3)構(gòu)造F(x)=f(x)-g(x)-h(x),.由此入手可以得到m的取值范圍是
點評:本題考查函數(shù)的性質(zhì)和應用,解題時要認真審題,注意挖掘隱含條件,仔細解答.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2014屆安徽省高三上學期第一次月考理科數(shù)學試卷(解析版) 題型:填空題

已知函數(shù)在[-1,+ ∞)上是減函數(shù),則a的取值范圍是            

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年浙江省高三上學期期中理科數(shù)學試卷 題型:解答題

已知函數(shù)在[1,+∞)上為增函數(shù),且,,R

(1)求θ的值;

(2)若在[1,+∞)上為單調(diào)函數(shù),求m的取值范圍;

(3)設,若在[1,e]上至少存在一個,使得成立,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年浙江省杭州市求是高復高三11月月考文科數(shù)學 題型:解答題

(本題滿分15分)

已知函數(shù)在[1,+∞)上為增函數(shù),且

(1)求的值;

(2)若在[1,+∞)上為單調(diào)函數(shù),求實數(shù)的取值范圍;

(3)若在上至少存在一個,使得成立,求實數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年甘肅省高三期中考試科數(shù)學卷 題型:選擇題

已知函數(shù)在[1,2]上的值恒為正,則a的取值范圍是(    )

A.        B.       C. D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年甘肅省高三期中考試科數(shù)學卷 題型:選擇題

已知函數(shù)在[1,2]上的值恒為正,則a的取值范圍是(    )

A.        B.       C. D.

 

查看答案和解析>>

同步練習冊答案