【題目】橢圓:中,,,,的面積為1,.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)是橢圓上一點(diǎn),、是橢圓的左右兩個焦點(diǎn),直線、分別交于、,是否存在點(diǎn),使,若存在,求出點(diǎn)的橫坐標(biāo);若不存在,請說明理由.
【答案】(Ⅰ)(Ⅱ)存在,的橫坐標(biāo)為或或.
【解析】
(Ⅰ)由三角形的面積公式可得,結(jié)合兩點(diǎn)的距離公式解得,,進(jìn)而得到橢圓方程;
(Ⅱ)假設(shè)存在點(diǎn),使,設(shè),求得的坐標(biāo),過作軸的垂線交軸于,運(yùn)用三角形的面積公式和三角形的相似性質(zhì),結(jié)合坐標(biāo)運(yùn)算,解方程可得所求值.
解:(Ⅰ)由題意可得,的面積為,
又,可得,解得,,
則橢圓的方程為;
(Ⅱ)假設(shè)存在點(diǎn),使,
設(shè),與軸交于,過作軸的垂線交軸于,
又,,
由,
可得,
即,
可得,則,
即,可得,或,
又,則或,
故存在,且的橫坐標(biāo)為或或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高中志愿者男志愿者5人,女志愿者3人,這些人要參加社區(qū)服務(wù)工作.從這些人中隨機(jī)抽取4人負(fù)責(zé)文明宣傳工作,另外4人負(fù)責(zé)衛(wèi)生服務(wù)工作.
(Ⅰ)設(shè)為事件;“負(fù)責(zé)文明宣傳工作的志愿者中包含女志愿者甲但不包含男志愿者乙”,求事件發(fā)生的概率;
(Ⅱ)設(shè)表示參加文明宣傳工作的女志愿者人數(shù),求隨機(jī)變量的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1是淋浴房示意圖,它的底座是由正方形截去一角得到,這一角是一個與正方形兩鄰邊相切的圓的圓。ㄈ鐖D2).現(xiàn)已知正方形的邊長是1米,設(shè)該底座的面積為S平方米,周長為l米(周長是指圖2中實(shí)線部分),圓的半徑為r米.設(shè)計的理想要求是面積S盡可能大,周長l盡可能小,但顯然S、l都是關(guān)于r的減函數(shù),于是設(shè),當(dāng)的值越大,滿意度就越高.試問r為何值時,該淋浴房底座的滿意度最高?(解答時π以3代入運(yùn)算)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)通過調(diào)查問卷(滿分50分)的形式對本企業(yè)900名員工的工作滿意程度進(jìn)行調(diào)查,并隨機(jī)抽取了其中30名員工(16名女工,14名男工)的得分,如下表:
女 | 47 | 36 | 32 | 48 | 34 | 44 | 43 | 47 | 46 | 41 | 43 | 42 | 50 | 43 | 35 | 49 |
男 | 37 | 35 | 34 | 43 | 46 | 36 | 38 | 40 | 39 | 32 | 48 | 33 | 40 | 34 |
(1)根據(jù)以上數(shù)據(jù),估計該企業(yè)得分大于45分的員工人數(shù);
(2)現(xiàn)用計算器求得這30名員工的平均得分為40.5分,若規(guī)定大于平局得分為 “滿意”,否則為 “不滿意”,請完成下列表格:
“滿意”的人數(shù) | “不滿意”的人數(shù) | 合計 | |
女員工 | 16 | ||
男員工 | 14 | ||
合計 | 30 |
(3)根據(jù)上述表中數(shù)據(jù),利用獨(dú)立性檢驗(yàn)的方法判斷,能否在犯錯誤的概率不超過1%的前提下,認(rèn)為該企業(yè)員工“性別”與“工作是否滿意”有關(guān)?
參考數(shù)據(jù):
P(K2K) | 0.10 | 0.050 | 0.025 | 0.010 | 0.001 |
K | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l: 橢圓C: ,分別為橢圓的左右焦點(diǎn).
(1)當(dāng)直線l過右焦點(diǎn)時,求C的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l與橢圓C交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),若∠AOB是鈍角,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).
(1)討論函數(shù)在區(qū)間上的單調(diào)性;
(2)已知,若對任意,有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】作家馬伯庸小說《長安十二時辰》中,靖安司通過長安城內(nèi)的望樓傳遞信息.同名改編電視劇中,望樓傳遞信息的方式有一種如下:如圖所示,在九宮格中,每個小方格可以在白色和紫色(此處以陰影代表紫色)之間變換,從而一共可以有512種不同的顏色組合,即代表512種不同的信息.現(xiàn)要求每一行,每一列上至多有一個紫色小方格(如圖所示即滿足要求).則一共可以傳遞______種信息.(用數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(φ為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系.
(1)求C1的極坐標(biāo)方程;
(2)若C1與曲線C2:ρ=2sinθ交于A,B兩點(diǎn),求|OA||OB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在10件產(chǎn)品中,有3件一等品,4件二等品,3件三等品。從這10件產(chǎn)品中任取3件,求:
(I) 取出的3件產(chǎn)品中一等品件數(shù)X的分布列和數(shù)學(xué)期望;
(II) 取出的3件產(chǎn)品中一等品件數(shù)多于二等品件數(shù)的概率。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com