已知復(fù)數(shù)z1=m+ni(m,n∈R),z=x+yi(x,y∈R),z2=2+4i且z=
.
z1
i-z2

(1)若復(fù)數(shù)z1對應(yīng)的點(diǎn)M(m,n)在曲線y=-
1
2
(x+3)2-1
上運(yùn)動(dòng),求復(fù)數(shù)z所對應(yīng)的點(diǎn)P(x,y)的軌跡方程;
(2)將(1)中的軌跡上每一點(diǎn)按向量
a
=(
3
2
,1)
方向平移
13
2
個(gè)單位,得到新的軌跡C,求C的軌跡方程;
(3)過軌跡C上任意一點(diǎn)A(異于頂點(diǎn))作其切線,交y軸于點(diǎn)B,求證:以線段AB為直徑的圓恒過一定點(diǎn),并求出此定點(diǎn)的坐標(biāo).
分析:(1)根據(jù)復(fù)數(shù)條件求出關(guān)系式
n=x+2
m=y+4
,結(jié)合復(fù)數(shù)z1對應(yīng)的點(diǎn)M(m,n)在曲線y=-
1
2
(x+3)2-1
上運(yùn)動(dòng)即可得出復(fù)數(shù)z所對應(yīng)的點(diǎn)P(x,y)的軌跡方程;
(2)先按向量
a
=(
3
2
,1)
方向平移
13
2
個(gè)單位得到即為向 x 方向移動(dòng) 1×
3
2
=
3
2
個(gè)單位,向 y 方向移動(dòng) 1×1=1 個(gè)單位,再進(jìn)行函數(shù)式的變換即可得出C的軌跡方程;
(3)設(shè)A(x0,y0),斜率為k,切線y-y0=k(x-x0) 代入(y+6)2=-2x-3消去x得到關(guān)于y的一元二次方程,再結(jié)合根的判別式為0利用向量的數(shù)量即可求得定點(diǎn),從而解決問題.
解答:解:(1)∵
.
z1
i-z2=(m-ni)•i-(2+4i)=(n-2)+(m-4)i;
x=n-2
y=m-4
n=x+2
m=y+4

∵復(fù)數(shù)z1對應(yīng)的點(diǎn)M(m,n)在曲線y=-
1
2
(x+3)2-1
上運(yùn)動(dòng)
∴x+2=-
1
2
(y+7)2-1⇒(y+7)2=-2(x+3).
復(fù)數(shù)z所對應(yīng)的點(diǎn)P(x,y)的軌跡方程:(y+7)2=-2(x+3).
(2)∵按向量
a
=(
3
2
,1)
方向平移
13
2
個(gè)單位,
(
3
2
) 2+12
=
13
2
=1×
13
2

即為向 x 方向移動(dòng) 1×
3
2
=
3
2
個(gè)單位,向 y 方向移動(dòng) 1×1=1 個(gè)單位
(y+7)2=-2(x+3)⇒y+7=±
-2(x+3)

得軌跡方程 y+7=±
-2(x-
3
2
+3)
+1
⇒(y+6)2=-2(x+
3
2
)=-2x-3.
C的軌跡方程為:(y+6)2=-2x-3.
(3)設(shè)A(x0,y0),斜率為k,切線y-y0=k(x-x0) (k≠0),
代入(y+6)2=-2x-3整理得:
(y+6)2=-2(
y-y 0
k
+x 0
)-3,△=0⇒k=
x 0
2

設(shè)定點(diǎn)M(1,0),且
AM
BM
=0

∴以線段AB為直徑的圓恒過一定點(diǎn)M,M點(diǎn)的坐標(biāo)(1,0).
點(diǎn)評(píng):本小題主要考查拋物線的簡單性質(zhì)、直線與圓的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,本題巧妙地把點(diǎn)的軌跡方程和復(fù)數(shù)有機(jī)地結(jié)合在一起,解題時(shí)要注意復(fù)數(shù)的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z1=2cosθ+isinθ,z2=1-isinθ,其中i為虛數(shù)單位,θ∈R.
(1)當(dāng)z1,z2是實(shí)系數(shù)一元二次方程x2+mx+n=0的兩個(gè)虛根時(shí),求m、n的值.
(2)求|z1
.
z2
|的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知復(fù)數(shù)z1=2cosθ+isinθ,z2=1-isinθ,其中i為虛數(shù)單位,θ∈R.
(1)當(dāng)z1,z2是實(shí)系數(shù)一元二次方程x2+mx+n=0的兩個(gè)虛根時(shí),求m、n的值.
(2)求|z1
.
z2
|的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年上海市上海中學(xué)高三數(shù)學(xué)綜合練習(xí)試卷(7)(解析版) 題型:解答題

已知復(fù)數(shù)z1=m+ni(m,n∈R),z=x+yi(x,y∈R),z2=2+4i且
(1)若復(fù)數(shù)z1對應(yīng)的點(diǎn)M(m,n)在曲線上運(yùn)動(dòng),求復(fù)數(shù)z所對應(yīng)的點(diǎn)P(x,y)的軌跡方程;
(2)將(1)中的軌跡上每一點(diǎn)按向量方向平移個(gè)單位,得到新的軌跡C,求C的軌跡方程;
(3)過軌跡C上任意一點(diǎn)A(異于頂點(diǎn))作其切線,交y軸于點(diǎn)B,求證:以線段AB為直徑的圓恒過一定點(diǎn),并求出此定點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案