若實(shí)數(shù)x,y滿足不等式組且目標(biāo)函數(shù)z=4x•2y的最小值是2,則實(shí)數(shù)a的值是   
【答案】分析:先根據(jù)條件畫出可行域,再根據(jù)目標(biāo)函數(shù)z=4x•2y的最小值是2,得到M=2x+y的最小值為1;分析出何時(shí)M=2x+y最小把點(diǎn)的坐標(biāo)代入即可求出實(shí)數(shù)a的值.
解答:解:不等式組對應(yīng)的平面區(qū)域如圖:
∵目標(biāo)函數(shù)z=4x•2y的最小值是2;
又∵z=4x•2y=22x+y
∴M=2x+y的最小值為1.
由圖得:M=2x+y在過點(diǎn)A(a,)時(shí)才有最小值,
故有:2a+=1,解得a=
故答案為:
點(diǎn)評:利用線性規(guī)劃求函數(shù)的最值時(shí),關(guān)鍵是將目標(biāo)函數(shù)賦予幾何意義,數(shù)學(xué)結(jié)合求出何時(shí)取最值.解決本題的關(guān)鍵是根據(jù)目標(biāo)函數(shù)z=4x•2y的最小值是2,得到M=2x+y的最小值為1.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)y=f(x),若對任意不等實(shí)數(shù)x1,x2滿足
f(x1)-f(x2)
x1-x2
<0
,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對稱,則當(dāng) 1≤x≤4時(shí),
y
x
的取值范圍為
[-
1
2
,1]
[-
1
2
,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年重慶一中高三(上)10月月考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

定義在R上的函數(shù)y=f(x),若對任意不等實(shí)數(shù)x1,x2滿足,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對稱,則當(dāng) 1≤x≤4時(shí),的取值范圍為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年山東省實(shí)驗(yàn)中學(xué)高考數(shù)學(xué)三模試卷(文科)(解析版) 題型:填空題

定義在R上的函數(shù)y=f(x),若對任意不等實(shí)數(shù)x1,x2滿足,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對稱,則當(dāng) 1≤x≤4時(shí),的取值范圍為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年山東省淄博市高考數(shù)學(xué)模擬試卷3(理科)(解析版) 題型:填空題

定義在R上的函數(shù)y=f(x),若對任意不等實(shí)數(shù)x1,x2滿足,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對稱,則當(dāng) 1≤x≤4時(shí),的取值范圍為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年山東省實(shí)驗(yàn)中學(xué)高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

定義在R上的函數(shù)y=f(x),若對任意不等實(shí)數(shù)x1,x2滿足,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對稱,則當(dāng) 1≤x≤4時(shí),的取值范圍為   

查看答案和解析>>

同步練習(xí)冊答案