判斷下列各對事件是否是互斥事件,并說明道理.

某小組有3名男生和2名女生,從中任選2名同學去參加演講比賽,其中:

(1)恰有1名男生和恰有2名男生;

(2)至少有1名男生和至少有1名女生;

(3)至少有1名男生和全是男生;

(4)至少有1名男生和全是女生.

答案:略
解析:

判斷兩個事件是否為互斥事件,就是考查它們能否同時發(fā)生,如果不能同時發(fā)生,則是互斥事件,不然就不是互斥事件.

解:(1)是互斥事件.

道理是:在所選的2名同學中,“恰有1名男生”實質(zhì)是選出的是“1名男生和1名女生”,它與“恰有兩名男生”,不可能同時發(fā)生.所以是一對互斥事件.

(2)不是互斥事件.

道理是:“至少有1名男生”包括“1名男生、1名女生”和“2名都是男生”兩種結(jié)果.“至少有1名女生”包括“1名女生、1名男生”和“2名都是女生”兩種結(jié)果,它們可同時發(fā)生.

(3)不是互斥事件.

道理是:“至少有1名男生”包括“1名男生、1名女生”和“2名都是男生”,這與“全是男生”,可同時發(fā)生.

(4)是互斥事件.

道理是:“至少有1名男生”包括“1名男生、1名女生”和“兩名都是男生”兩種結(jié)果,它和“全是女生”不可能同時發(fā)生.

互斥事件是概率知識中的重要概念,必須正確理解.

(1)互斥事件是對兩個事件而言的.若有A、B兩個事件,當事件A發(fā)生時,事件B就不發(fā)重生;當事件B發(fā)生時,事件A就不發(fā)生(即事件A、B不可能同時發(fā)生),我們就把這種不可能同時發(fā)生的兩個事件叫作互斥事件,否則就不是互斥事件.

(2)對互斥事件的理解,也可以從集合的角度去加以認識.

如果A、B是兩個互斥事件,反映在集合上,是表示A、B這兩個事件所含結(jié)果組成的集合彼此互不相交.

如果事件,,┉,中的任何兩個都是互斥事件,那么稱事件,,┉,彼此互斥,反映在集合上,表現(xiàn)為由各個事件所含的結(jié)果組成的集合彼此互不相交.


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

判斷下列各對事件是否是互斥事件,并說明理由.
某小組有三名男生和兩名女生,從中任選兩名去參加比賽,其中
①恰有一名男生和兩名男生;
是互斥事件
是互斥事件
,理由:
恰有一名男生實質(zhì)是選出的兩名同學中“一名男生和一名女生”,它與恰有兩名男生不可能同時發(fā)生
恰有一名男生實質(zhì)是選出的兩名同學中“一名男生和一名女生”,它與恰有兩名男生不可能同時發(fā)生
;
②至少有一名男生和至少有一名女生;
不是互斥事件
不是互斥事件
,理由:
事件“至少有一名男生”和“至少有一名女生”都包含事件“兩名男生與一名女生”和“兩名女生與一名男生”
事件“至少有一名男生”和“至少有一名女生”都包含事件“兩名男生與一名女生”和“兩名女生與一名男生”
;
③至少有一名男生和全是男生;
不是互斥事件
不是互斥事件
,理由:
事件“至少有一名男生”包含事件“全是男生”
事件“至少有一名男生”包含事件“全是男生”

④至少有一名男生和全是女生.
是互斥事件
是互斥事件
,理由:
不可能同時發(fā)生
不可能同時發(fā)生

查看答案和解析>>

科目:高中數(shù)學 來源:數(shù)學教研室 題型:044

判斷下列各對事件是否是互斥事件,并說明道理.某小組有3名男生和2名女生,從中任選2名同學去參加演講比賽,其中

(1)恰有1名男生和恰有2名男生;(2)至少有一名男生和至少有一名女生;(3)至少有一名男生和全是男生;(4)至少有1名男生和全是女生.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

判斷下列各對事件是否是互斥事件,并說明道理.

某小組有3名男生和2名女生,從中任選2名同學去參加演講比賽,其中:

(1)恰有1名男生和恰有2名男生;

(2)至少有1名男生和至少有1名女生;

(3)至少有1名男生和全是男生;

(4)至少有1名男生和全是女生.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

判斷下列各對事件是否是互斥事件,并說明理由.
某小組有三名男生和兩名女生,從中任選兩名去參加比賽,其中
①恰有一名男生和兩名男生;______,理由:______;
②至少有一名男生和至少有一名女生;______,理由:______;
③至少有一名男生和全是男生;______,理由:______;
④至少有一名男生和全是女生.______,理由:______.

查看答案和解析>>

科目:高中數(shù)學 來源:《3.1.3 概率的基本性質(zhì)》2013年同步練習(解析版) 題型:填空題

判斷下列各對事件是否是互斥事件,并說明理由.
某小組有三名男生和兩名女生,從中任選兩名去參加比賽,其中
①恰有一名男生和兩名男生;    ,理由:    ;
②至少有一名男生和至少有一名女生;    ,理由:    ;
③至少有一名男生和全是男生;    ,理由:    ;
④至少有一名男生和全是女生.    ,理由:   

查看答案和解析>>

同步練習冊答案