北京、張家港2022年冬奧會(huì)申辦委員會(huì)在俄羅斯索契舉辦了發(fā)布會(huì),某公司為了競(jìng)標(biāo)配套活動(dòng)的相關(guān)代言,決定對(duì)旗下的某商品進(jìn)行一次評(píng)估.該商品原來每件售價(jià)為25元,年銷售8萬件.
(1)據(jù)市場(chǎng)調(diào)查,若價(jià)格每提高1元,銷售量將相應(yīng)減少2000件,要使銷售的總收入不低于原收入,該商品每件定價(jià)最多為多少元?
(2)為了抓住申奧契機(jī),擴(kuò)大該商品的影響力,提高年銷售量.公司決定立即對(duì)該商品進(jìn)行全面技術(shù)革新和營(yíng)銷策略改革,并提高定價(jià)到x元.公司擬投入
1
6
(x2-600)
萬作為技改費(fèi)用,投入50萬元作為固定宣傳費(fèi)用,投入
x
5
萬元作為浮動(dòng)宣傳費(fèi)用.試問:當(dāng)該商品改革后的銷售量a至少應(yīng)達(dá)到多少萬件時(shí),才可能使改革后的銷售收入不低于原收入與總投入之和?并求出此時(shí)商品的每件定價(jià).
考點(diǎn):根據(jù)實(shí)際問題選擇函數(shù)類型
專題:綜合題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)設(shè)每件定價(jià)為x元,可得提高價(jià)格后的銷售量,根據(jù)銷售的總收人不低于原收入,建立不等式,解不等式可得每件最高定價(jià);
(2)依題意,x>25時(shí),不等式ax≥25×8+50+
1
6
(x2-600)+
1
5
x有解,等價(jià)于x>25時(shí),a≥
150
x
+
1
6
x+
1
5
有解,利用基本不等式,我們可以求得結(jié)論.
解答: 解:(1)設(shè)每件定價(jià)為t元,依題意得(8-
x-25
1
×0.2
)x≥25×8,
整理得t2-65t+1 000≤0,解得25≤t≤40.
所以要使銷售的總收入不低于原收入,每件定價(jià)最多為40元.
(2)依題意知當(dāng)x>25時(shí),不等式ax≥25×8+50+
1
6
(x2-600)+
1
5
x有解,
等價(jià)于x>25時(shí),a≥
150
x
+
1
6
x+
1
5
有解.
由于
150
x
+
1
6
x≥2 
150
x
×
x
6
=10,當(dāng)且僅當(dāng)
150
x
=
x
6
,即x=30時(shí)等號(hào)成立,所以a≥10.2.
當(dāng)該商品改革后的銷售量a至少達(dá)到10.2萬件時(shí),才可能使改革后的銷售收入不低于原收入與總投入之和,此時(shí)該商品的每件定價(jià)為30元.
點(diǎn)評(píng):解決實(shí)際問題的關(guān)鍵是讀懂題意,建立函數(shù)模型,同時(shí)應(yīng)注意變量的取值應(yīng)使實(shí)際問題有意義.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的長(zhǎng)軸長(zhǎng)為4,且點(diǎn)(1,
3
2
)在橢圓上.
(Ⅰ)求橢圓的方程;
(Ⅱ)過橢圓右焦點(diǎn)斜率為k的直線l交橢圓于A,B兩點(diǎn),若
OA
OB
=0,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={1,2,3,4},B={1,3},則CAB
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)①y=3x;②y=lnx;③y=x-1;④y=x
1
2
.則下列函數(shù)圖象(在第一象限部分)從左到右依次與函數(shù)序號(hào)的對(duì)應(yīng)順序一致的是( 。
A、④③①②B、②③①④
C、④①③②D、②①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+4x+2b-4a,當(dāng)x∈(-∞,-2)∪(6,+∞)時(shí),f(x)<0;當(dāng)x∈(-2,6)時(shí),f(x)>0.
(1)求a、b的值;
(2)設(shè)F(x)=-kf(x)+4(k+1)x+2(6k-1),當(dāng)k取何值時(shí),對(duì)?x∈[0,2],函數(shù)F(x)的值恒為負(fù)數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(a-2)x,x≥2
2x-1,x<2
滿足對(duì)任意實(shí)數(shù)x1≠x2,都有
f(x1)-f(x2)
x1-x2
>0成立,則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文科題)設(shè)a,b∈R,關(guān)于x的不等式ax2+bx-1>0的解集為{x|
1
2
<x<1}
,則a+b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+2x+a
x
,x∈[1,+∞).
(1)當(dāng)a=4時(shí),求函數(shù)f(x)的最小值;
(2)若對(duì)任意x∈[1,4],f(x)>6恒成立,試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(3x)=4xlog23,則f(4)的值等于(  )
A、4B、8C、16D、9

查看答案和解析>>

同步練習(xí)冊(cè)答案