已知數(shù)列{an}的前n項和Sn=3n+k(k為常數(shù)),那么下述結(jié)論正確的是( )
A.k為任意實數(shù)時,{an}是等比數(shù)列
B.k=-1時,{an}是等比數(shù)列
C.k=0時,{an}是等比數(shù)列
D.{an}不可能是等比數(shù)列
【答案】分析:可根據(jù)數(shù)列{an}的前n項和Sn=3n+k(k為常數(shù)),求出a1,以及n≥2時,an,再觀察,k等于多少時,,{an}是等比數(shù)列即可.
解答:解:∵數(shù)列{an}的前n項和Sn=3n+k(k為常數(shù)),∴a1=s1=3+k
n≥2時,an=sn-sn-1=3n+k-(3n-1+k)=3n-3n-1=2×3n-1
當(dāng)k=-1時,a1=2滿足an=2×3n-1
當(dāng)k=0時,a1=3不滿足2×3n-1
故選B
點(diǎn)評:本題考查了等比數(shù)列的判斷,以及數(shù)列的前n項和與通項之間的關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

19、已知數(shù)列{an}的前n項和Sn=n2(n∈N*),數(shù)列{bn}為等比數(shù)列,且滿足b1=a1,2b3=b4
(1)求數(shù)列{an},{bn}的通項公式;
(2)求數(shù)列{anbn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于(  )
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn=n2+n+1,那么它的通項公式為an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

13、已知數(shù)列{an}的前n項和為Sn=3n+a,若{an}為等比數(shù)列,則實數(shù)a的值為
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn滿足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項公式an
(2)求Sn

查看答案和解析>>

同步練習(xí)冊答案