13.四棱柱ABCD-A1B1C1D1中,∠A1AB=∠A1AD=∠DAB=60°,A1A=AB=AD=1,則AC1=$\sqrt{6}$.

分析 由題意畫出圖形,然后利用空間向量求解.

解答 解:如圖,

∵∠A1AB=∠A1AD=∠DAB=60°,A1A=AB=AD=1,
∴$|\overrightarrow{A{C}_{1}}{|}^{2}=|\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{C{C}_{1}}{|}^{2}$=$|\overrightarrow{AB}{|}^{2}+|\overrightarrow{BC}{|}^{2}+|\overrightarrow{C{C}_{1}}{|}^{2}$$+2(|\overrightarrow{AB}||\overrightarrow{BC}|+|\overrightarrow{BC}||\overrightarrow{C{C}_{1}}|+|\overrightarrow{C{C}_{1}}||\overrightarrow{AB}|)cos60°$
=3+2×$3×\frac{1}{2}$=6.
∴$|\overrightarrow{A{C}_{1}}|=\sqrt{6}$,即AC1=$\sqrt{6}$.
故答案為:$\sqrt{6}$.

點評 本題考查棱柱的結構特征,考查了利用空間向量求線段長度,是基礎的計算題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.已知$\overrightarrow{a}$=(x,1),$\overrightarrow$=(4,-2).
(Ⅰ)當$\overrightarrow{a}$∥$\overrightarrow$時,求|$\overrightarrow{a}$+$\overrightarrow$|;
(Ⅱ)若$\overrightarrow{a}$與$\overrightarrow$所成角為鈍角,求x的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知集合A={0,1},B={x|-1≤x≤2},則A∩B=( 。
A.{0,1}B.{-1,0,1}C.[-1,1]D.{1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{x}{e^x}$-axlnx(a∈R)在x=1處的切線的斜率k=-1.
(1)求a的值;
(2)證明:f(x)<$\frac{2}{e}$.
(3)若正實數(shù)m,n滿足mn=1,證明:$\frac{1}{e^m}+\frac{1}{e^n}$<2(m+n).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知命題p:點M(x,y)滿足xcosθ+ysinθ=1,θ∈(0,2π],命題q:點N(x,y)滿足x2+y2=m2(m>0),若p是q的必要不充分條件,那么實數(shù)m的取值范圍是m≥1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.設F1,F(xiàn)2分別是橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點,過F1傾斜角為45°的直線l與E相交于A,B兩點,且|AB|=$\frac{4a}{3}$
(Ⅰ)求E的離心率
(Ⅱ)設點P(0,-1)滿足|PA|=|PB|,求E的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知f(x)=$\left\{\begin{array}{l}{sin\frac{π}{2}x,x≤0}\\{f(x-2)+\frac{3}{2},x>0}\end{array}\right.$,則f($\frac{5}{3}$)的值為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.將500個實驗樣本編號為001,002,003,…,500.采用系統(tǒng)抽樣的方法抽取一個容量為50的樣本,且隨機抽得的一個號碼為005,這500個實驗樣本分別在三個本庫,從001到100在甲樣本庫,從101到250放在乙樣本庫,從251到500放在丙樣本庫,則甲、乙、丙三個樣本庫被抽中的樣本個數(shù)分別為( 。
A.10,15,25B.10,16,24C.11,15,24D.12,13,25

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.10101(2)轉化為十進制數(shù)是21.

查看答案和解析>>

同步練習冊答案