【題目】設m,n(3≤m≤n)是正整數(shù),數(shù)列Am:a1 , a2 , …,am , 其中ai(1≤i≤m)是集合{1,2,3,…,n}中互不相同的元素.若數(shù)列Am滿足:只要存在i,j(1≤i<j≤m)使ai+aj≤n,總存在k(1≤k≤m)有ai+aj=ak , 則稱數(shù)列Am是“好數(shù)列”. (Ⅰ)當m=6,n=100時,
(ⅰ)若數(shù)列A6:11,78,x,y,97,90是一個“好數(shù)列”,試寫出x,y的值,并判斷數(shù)列:11,78,90,x,97,y是否是一個“好數(shù)列”?
(ⅱ)若數(shù)列A6:11,78,a,b,c,d是“好數(shù)列”,且a<b<c<d,求a,b,c,d共有多少種不同的取值?
(Ⅱ)若數(shù)列Am是“好數(shù)列”,且m是偶數(shù),證明: .
【答案】解:(Ⅰ)(。適=6,n=100,數(shù)列A6:11,78,x,y,97,90是一個“好數(shù)列”, ∴x=89,y=100,或x=100,y=89,
數(shù)列:11,78,90,x,97,y也是一個“好數(shù)列”.
(ⅱ)由(。┛芍瑪(shù)列必含89,100兩項,
若剩下兩項從90,91,…,99中任取,則都符合條件,有 種;
若剩下兩項從79,80,…,88中任取一個,
則另一項必對應90,91,…,99中的一個,有10種;
若取68≤a≤77,則79≤11+a≤88,90≤22+a≤99,“好數(shù)列”必超過6項,不符合;
若取a=67,則11+a=78∈A6 , 另一項可從90,91,…,99中任取一個,有10種;
若取56<a<67,則67<11+a<78,78<22+a<89,“好數(shù)列”必超過6項,不符合;
若取a=56,則b=67,符合條件,
若取a<56,則易知“好數(shù)列”必超過6項,不符合;
綜上,a,b,c,d共有66種不同的取值.
證明:(Ⅱ)由(Ⅰ)易知,一個“好數(shù)列”各項任意排列后,還是一個“好數(shù)列”.
又“好數(shù)列”a1 , a2 , …,am各項互不相同,所以,不妨設a1<a2<…<am .
把數(shù)列配對: ,
只要證明每一對和數(shù)都不小于n+1即可.
用反證法,假設存在 ,使aj+am+1﹣j≤n,
因為數(shù)列單調遞增,所以am﹣j+1<a1+am﹣j+1<a2+am﹣j+1<…<aj+am﹣j+1≤n,
又因為“好數(shù)列”,故存在1≤k≤m,使得ai+am+1﹣j=ak(1≤i≤j),
顯然ak>am+1﹣j , 故k>m+1﹣j,所以ak只有j﹣1個不同取值,而ai+am+1﹣j有j個不同取值,矛盾.
所以, 每一對和數(shù)都不小于n+1,
故 ,即
【解析】(Ⅰ)(。┯伞昂脭(shù)列”定義能求出x,y的值,并判斷數(shù)列:11,78,90,x,97,y是一個“好數(shù)列”.(ⅱ)由數(shù)列必含89,100兩項,若剩下兩項從90,91,…,99中任取,有 種;若剩下兩項從79,80,…,88中任取一個,有10種.由此分類討論,能求出a,b,c,d共有多少種不同的取值.(Ⅱ)一個“好數(shù)列”各項任意排列后,還是一個“好數(shù)列”.設a1<a2<…<am . 把數(shù)列配對: ,只要證明每一對和數(shù)都不小于n+1即可.例用反證法,能證明 .
科目:高中數(shù)學 來源: 題型:
【題目】設f(x)=xex(e為自然對數(shù)的底數(shù)),g(x)=(x+1)2 .
(I)記 ,討論函F(x)單調性;
(II)令G(x)=af(x)+g(x)(a∈R),若函數(shù)G(x)有兩個零點.
(i)求參數(shù)a的取值范圍;
(ii)設x1 , x2是G(x)的兩個零點,證明x1+x2+2<0.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD= AD,AE⊥PC于點E,EF∥CD,交PD于點F (Ⅰ)證明:平面ADE⊥平面PBC
(Ⅱ)求二面角D﹣AE﹣F的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 的離心率為 ,點(2,0)在橢圓C上. (Ⅰ)求橢圓C的標準方程;
(Ⅱ)過點P(1,0)的直線(不與坐標軸垂直)與橢圓交于A、B兩點,設點B關于x軸的對稱點為B'.直線AB'與x軸的交點Q是否為定點?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2 sinxcosx+2cos2x﹣1 (Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在區(qū)間[﹣ , ]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,PA⊥圓O所在的平面,AB是圓O的直徑,C是圓O上的一點,E、F分別是點A在PB、PC上的射影,給出下列結論: ①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC;⑤平面PBC⊥平面PAC.其中正確命題的序號是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣2|+|2x+a|,a∈R. (Ⅰ)當a=1時,解不等式f(x)≥5;
(Ⅱ)若存在x0滿足f(x0)+|x0﹣2|<3,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=cos(2x+φ),|φ|≤ ,若f( ﹣x)=﹣f(x),則要得到y(tǒng)=sin2x的圖象只需將y=f(x)的圖象( )
A.向左平移 個單位
B.向右平移 個單位
C.向左平移 個單位
D.向右平移 個單位
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com