在等差數(shù)列中,
.
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列的前
項(xiàng)和
,求
的值.
(1);(2)
.
解析試題分析:(1)由等差數(shù)列,可將
變形為
再結(jié)合
即可得
,從而通項(xiàng)公式
;(2)由(1),可將
變形為與關(guān)于
的方程
,從而解得
.
(1)∵等差數(shù)列,∴
3分,
∴通項(xiàng)公式; 7分
由(1)可得 10分
∴化簡(jiǎn)后得,又∵
,∴
14分
考點(diǎn):1.等差數(shù)列的通項(xiàng)公式;2等差數(shù)列的前項(xiàng)和.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)各項(xiàng)均為正數(shù)的數(shù)列的前
項(xiàng)和為
,滿(mǎn)足
且
構(gòu)成等比數(shù)列.(1) 證明:
;(2) 求數(shù)列
的通項(xiàng)公式;(3) 證明:對(duì)一切正整數(shù)
,有
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
數(shù)列的前
項(xiàng)和為
,且
,數(shù)列
為等差數(shù)列,且
,
.
(1)求數(shù)列的通項(xiàng)公式;
(2)若對(duì)任意的,
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等差數(shù)列的前
項(xiàng)和為
,
,
,
(1)求數(shù)列的通項(xiàng)公式;
(2)若,求數(shù)列
的前100項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)
在等差數(shù)列中,已知公差
,
是
與
的等比中項(xiàng).
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),記
,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列的前
項(xiàng)和
.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列
的前
項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列的首項(xiàng)
,且對(duì)任意
都有
(其中
為常數(shù)).
(1)若數(shù)列為等差數(shù)列,且
,求
的通項(xiàng)公式.
(2)若數(shù)列是等比數(shù)列,且
,從數(shù)列
中任意取出相鄰的三項(xiàng),均能按某種順序排成等差數(shù)列,求
的前
項(xiàng)和
成立的
的取值的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列滿(mǎn)足
(
).
(1)若數(shù)列是等差數(shù)列,求數(shù)列
的前
項(xiàng)和
;
(2)證明:數(shù)列不可能是等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè){an}是公比為正數(shù)的等比數(shù)列,a1=2,a3=a2+4.
(1)求{an}的通項(xiàng)公式.
(2)設(shè){bn}是首項(xiàng)為1,公差為2的等差數(shù)列,求{an+bn}的前n項(xiàng)和Sn.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com