分析 (1)求出圓的半徑,即可求圓O的方程;
(2)分類(lèi)討論,利用圓心到直線的距離等于半徑,即可求切線的方程.
解答 解:(1)圓心到直線的距離d=$\frac{4}{\sqrt{1+3}}$=2,
∴求圓O的方程為x2+y2=4;
(2)斜率不存在時(shí),x=2滿足題意;
斜率存在時(shí),設(shè)直線方程為y-3=k(x-2),即kx-y-2k+3=0,
圓心到直線的距離d=$\frac{|-2k+3|}{\sqrt{{k}^{2}+1}}$=2,∴k=$\frac{5}{12}$,切線的方程為5x-12y+26=0.
綜上所述切線的方程為x=2或5x-12y+26=0.
點(diǎn)評(píng) 本題考查圓的方程,考查直線與圓的位置關(guān)系,考查分類(lèi)討論的數(shù)學(xué)思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
組號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
頻數(shù) | 9 | 14 | 14 | 13 | 12 | x | 13 | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{e}$ | B. | e | C. | -$\frac{1}{e}$ | D. | -e |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,3) | B. | (-3,1) | C. | (-1,-3 ) | D. | (3,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 40 | B. | 35 | C. | 30 | D. | 25 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 10 cm | B. | 7.2 cm | C. | 2.4 cm | D. | 3.6 cm |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com