若y=ax與在(0,+∞)上都是減函數(shù),對(duì)函數(shù)y=ax3+bx的單調(diào)性描述正確的是( )
A.在(-∞,+∞)上是增函數(shù)
B.在(0,+∞)上是增函數(shù)
C.在(-∞,+∞)上是減函數(shù)
D.在(-∞,0)上是增函數(shù),在(0,+∞)上是減函數(shù)
【答案】分析:利用正比例函數(shù)與反比例函數(shù)的單調(diào)性得到a,b的范圍;求出三次函數(shù)的導(dǎo)函數(shù),推出導(dǎo)函數(shù)小于0,從而得出結(jié)論.
解答:解:根據(jù)題意a<0,b<0.
由y=ax3+bx,得y′=3ax2+b,
∴y′≤0
故函數(shù)y=ax3+bx在(-∞,+∞)為減函數(shù).
故選C.
點(diǎn)評(píng):本題考查函數(shù)的單調(diào)性與導(dǎo)函數(shù)符號(hào)的關(guān)系:f′(x)>0則f(x)單增;當(dāng)f′(x)<0則f(x)遞減.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若y=ax與y=-
b
x
在(0,+∞)上都是減函數(shù),對(duì)函數(shù)y=ax3+bx的單調(diào)性描述正確的是(  )
A、在(-∞,+∞)上是增函數(shù)
B、在(0,+∞)上是增函數(shù)
C、在(-∞,+∞)上是減函數(shù)
D、在(-∞,0)上是增函數(shù),在(0,+∞)上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

若y=ax與數(shù)學(xué)公式在(0,+∞)上都是減函數(shù),對(duì)函數(shù)y=ax3+bx的單調(diào)性描述正確的是


  1. A.
    在(-∞,+∞)上是增函數(shù)
  2. B.
    在(0,+∞)上是增函數(shù)
  3. C.
    在(-∞,+∞)上是減函數(shù)
  4. D.
    在(-∞,0)上是增函數(shù),在(0,+∞)上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若y=ax與y=-
b
x
在(0,+∞)上都是減函數(shù),對(duì)函數(shù)y=ax3+bx的單調(diào)性描述正確的是( 。
A.在(-∞,+∞)上是增函數(shù)
B.在(0,+∞)上是增函數(shù)
C.在(-∞,+∞)上是減函數(shù)
D.在(-∞,0)上是增函數(shù),在(0,+∞)上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖北省天門市岳口高中高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

若y=ax與在(0,+∞)上都是減函數(shù),對(duì)函數(shù)y=ax3+bx的單調(diào)性描述正確的是( )
A.在(-∞,+∞)上是增函數(shù)
B.在(0,+∞)上是增函數(shù)
C.在(-∞,+∞)上是減函數(shù)
D.在(-∞,0)上是增函數(shù),在(0,+∞)上是減函數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案