求值cos15°+
3
sin15°
=______.
cos15°+
3
sin15°
=2(
1
2
cos15°+
3
2
sin15°)=2sin(30°+15°)=2sin45°=
2

故答案為:
2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:新課程高中數(shù)學(xué)疑難全解 題型:044

求值:

(1)sin10°sin50°sin70°;

(2)tan(18°-x)tan(12°+x)+[tan(18°-x)+tan(12°+x)];

(3)cos25°+cos210°-2cos5°cos10°cos15°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:038

(1)sin15°,cos15°,tan15°的值;(2)求,的值;(3)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:044

(1)求sin15°,cos15°,tan15°的值;(2)求的值;(3)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年普通高等學(xué)校招生全國(guó)統(tǒng)一考試福建卷數(shù)學(xué)文科 題型:044

某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個(gè)式子的值都等于同一個(gè)常數(shù).

(1)sin213°+cos217°-sin13°cos17°

(2)sin215°+cos215°-sin15°cos15°

(3)sin218°+cos212°-sin18°cos12°

(4)sin2(-18°)+cos248°-sin2(-18°)cos248°

(5)sin2(-25°)+cos255°-sin2(-25°)cos255°

(Ⅰ)試從上述五個(gè)式子中選擇一個(gè),求出這個(gè)常數(shù)

(Ⅱ)根據(jù)(Ⅰ)的計(jì)算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣位三角恒等式,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年普通高等學(xué)校招生全國(guó)統(tǒng)一考試福建卷數(shù)學(xué)理科 題型:044

某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個(gè)式子的值都等于同一個(gè)常數(shù).

(1)sin213°+cos217°-sin13°cos17°

(2)sin215°+cos215°-sin15°cos15°

(3)sin218°+cos212°-sin18°cos12°

(4)sin2(-18°)+cos248°-sin2(-18°)cos248°

(5)sin2(-25°)+cos255°-sin2(-25°)cos255°

Ⅰ試從上述五個(gè)式子中選擇一個(gè),求出這個(gè)常數(shù)

Ⅱ根據(jù)(Ⅰ)的計(jì)算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣位三角恒等式,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案