已知直線l過兩點A(1,8),B(-1,4).求:
(1)A,B兩點間的距離;
(2)直線l的方程.
分析:(1)利用兩點間的距離公式,可得結論;
(2)確定直線AB的斜率,由點斜式可得方程.
解答:解:(1)∵A(1,8),B(-1,4),
|AB|=
(1+1)2+(8-4)2
=2
5

(2)直線AB的斜率為k1=
8-4
1+1
=2
,由點斜式可得lAB:y-8=2(x-1)
即直線AB的方程為2x-y+6=0
點評:本題考查兩點間的距離公式,考查點斜式,考查學生的計算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設雙曲線
x2
a2
-
y2
b2
=1(0<a<b)
的半焦距為c,已知直線l過(a,0),(0,b)兩點,且原點O到直線l的距離為
3
4
c
,求此雙曲線的離心率.

查看答案和解析>>

科目:高中數(shù)學 來源:中學教材標準學案 數(shù)學 高二上冊 題型:022

已知直線l過兩點A(-2,0)和B(-5,3),則其傾斜角為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知直線l過兩點A(1,8),B(-1,4).求:
(1)A,B兩點間的距離;
(2)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東省東莞市高一(上)期末數(shù)學試卷(解析版) 題型:解答題

已知直線l過兩點A(1,8),B(-1,4).求:
(1)A,B兩點間的距離;
(2)直線l的方程.

查看答案和解析>>

同步練習冊答案