證明不等式1+(n∈N).

證明:1°當(dāng)n=1時(shí),左邊=1,右邊=2.左邊<右邊.不等式成立.

2°假設(shè)當(dāng)n=k時(shí),不等式成立,即1+,則當(dāng)n=k+1時(shí),1+(現(xiàn)在關(guān)鍵證明).∵

=(基本不等式放縮)

==0,

,

即當(dāng)n=k+1時(shí),原不等式成立,由1°、2°,可知對(duì)任意n∈N,原不等式成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用數(shù)學(xué)歸納法證明不等式1+
1
2
+
1
4
+…+
1
2n-1
127
64
(n∈N*)成立,其初始值至少應(yīng)取
8
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•豐臺(tái)區(qū)一模)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2n-1.?dāng)?shù)列{bn}滿足b1=2,bn+1-2bn=8an
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)證明:數(shù)列{
bn
2n
}
為等差數(shù)列,并求{bn}的通項(xiàng)公式;
(Ⅲ)設(shè)數(shù)列{bn}的前n項(xiàng)和為Tn,是否存在常數(shù)λ,使得不等式(-1)nλ<1+
Tn-6
Tn+1-6
(n∈N*)恒成立?若存在,求出λ的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•濟(jì)南三模)設(shè)函數(shù)f(x)=x2-2(-1)klnx(k∈N*),f(x)表示f(x)導(dǎo)函數(shù).
(I)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)k為偶數(shù)時(shí),數(shù)列{an}滿足a1=1,anf(an)
=a
2
n+1
-3
.證明:數(shù)列{
a
2
n
}中不存在成等差數(shù)列的三項(xiàng);
(Ⅲ)當(dāng)k為奇數(shù)時(shí),設(shè)bn=
1
2
f
(n)-n
,數(shù)列{bn}的前n項(xiàng)和為Sn,證明不等式(1+bn)
1
bn+1
e對(duì)一切正整數(shù)n均成立,并比較S2012-1與ln2012的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

證明不等式1+(n∈N).

查看答案和解析>>

同步練習(xí)冊(cè)答案