已知三角形ABC的一個(gè)內(nèi)角是120°,三邊長構(gòu)成公差為4的等差數(shù)列,則三角形的面積是( 。
分析:因?yàn)槿切稳厴?gòu)成公差為4的等差數(shù)列,設(shè)中間的一條邊為x,則最大的邊為x+4,最小的邊為x-4,根據(jù)余弦定理表示出cos120°的式子,將各自設(shè)出的值代入即可得到關(guān)于x的方程,求出方程的解即可得到三角形的邊長,然后利用三角形的面積公式即可求出三角形ABC的面積.
解答:解:設(shè)三角形的三邊分別為x-4,x,x+4,
則cos120°=
x2+(x-4)2-(x+4)2
2x(x-4)
=-
1
2
,
化簡得:x-16=4-x,解得x=10,
所以三角形的三邊分別為:6,10,14
則△ABC的面積S=
1
2
×6×10sin120°=15
3

故選B
點(diǎn)評(píng):此題考查了等差數(shù)列的性質(zhì),余弦定理,以及三角形的面積公式,熟練掌握定理及公式是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•南充一模)已知三角形ABC中,點(diǎn)D是BC的中點(diǎn),過點(diǎn)D的直線分別交直線AB,AC于E、F兩點(diǎn),若
AB
=λ
AE
(λ>0),
AC
AF
(μ>0),則
1
λ
+
4
μ
的最小值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•浦東新區(qū)二模)已知直角△ABC的三邊長a,b,c,滿足a≤b<c
(1)在a,b之間插入2011個(gè)數(shù),使這2013個(gè)數(shù)構(gòu)成以a為首項(xiàng)的等差數(shù)列{an },且它們的和為2013,求c的最小值;
(2)已知a,b,c均為正整數(shù),且a,b,c成等差數(shù)列,將滿足條件的三角形的面積從小到大排成一列S1,S2,S3,…Sn,且Tn=-S1+S2-S3+…+(-1) nSn,求滿足不等式T2n>6•2n+1的所有n的值;
(3)已知a,b,c成等比數(shù)列,若數(shù)列{Xn}滿足
5
Xn=(
c
a
)n-(-
a
c
)n
(n∈N+),證明:數(shù)列{
Xn
}中的任意連續(xù)三項(xiàng)為邊長均可以構(gòu)成直角三角形,且Xn是正整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:學(xué)習(xí)周報(bào) 數(shù)學(xué) 北師大課標(biāo)高二版(選修2-2) 2009-2010學(xué)年 第27期 總第183期 北師大課標(biāo) 題型:044

已知Rt△ABC的三條邊分別為3,4,5,若該三角形繞著三條邊分別旋轉(zhuǎn)一周,所得幾何體的體積分別為12π,16π,π,注意到()2+()2=()2.將此結(jié)果拓展到邊長分別為a,b,c(c為斜邊長)的一般直角三角形,你能得到什么結(jié)論,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Rt△ABC的兩直角邊AC=2,BC=3,P為斜邊上一

點(diǎn),沿CP將此直角三角形折成直二面角A—CP—B,當(dāng)AB=71/2時(shí),求二面角P—AC—B的大小。

  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直角△ABC的三邊長a,b,c,滿足a≤b<c
(1)在a,b之間插入2011個(gè)數(shù),使這2013個(gè)數(shù)構(gòu)成以a為首項(xiàng)的等差數(shù)列{an },且它們的和為2013,求c的最小值;
(2)已知a,b,c均為正整數(shù),且a,b,c成等差數(shù)列,將滿足條件的三角形的面積從小到大排成一列S1,S2,S3,…Sn,且數(shù)學(xué)公式,求滿足不等式數(shù)學(xué)公式的所有n的值;
(3)已知a,b,c成等比數(shù)列,若數(shù)列{Xn}滿足數(shù)學(xué)公式(n∈N+),證明:數(shù)列{數(shù)學(xué)公式 }中的任意連續(xù)三項(xiàng)為邊長均可以構(gòu)成直角三角形,且Xn是正整數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案