已知函數(shù)f(x)=sinx-
3
cosx+2
,記函數(shù)f(x)的最小正周期為β,向量
a
=(2,cosα)
,
b
=(1,tan(α+
β
2
))
0<α<
π
4
),且
a
b
=
7
3

(Ⅰ)求f(x)在區(qū)間[
3
,
3
]
上的最值;
(Ⅱ)求
2cos2α-sin2(α+β)
cosα-sinα
的值.
分析:(I)根據(jù)輔助角公式化簡,可得f(x)=2sin(x-
π
3
)+2
.再由x∈[
3
,
3
]
,利用正弦函數(shù)的圖象與性質(zhì)加以計算,可得f(x)的最小值與最大值;
(II)根據(jù)三角函數(shù)周期公式得β=2π,利用向量的數(shù)量積公式與正弦的誘導(dǎo)公式算出
a
b
=2+sinα=
7
3
,解得sinα=
1
3
,從而得出cosα=
2
2
3
.再利用三角函數(shù)的誘導(dǎo)公式化簡,可得原式=2cosα=
4
2
3
解答:解:(Ⅰ)根據(jù)題意,可得
f(x)=sinx-
3
cosx+2
=2(sinxcos
π
3
-cosxsin
π
3
)+2
=2sin(x-
π
3
)+2

∵x∈[
3
3
]
,可得x-
π
3
∈[
π
3
,π]
,∴sin(x-
π
3
)
∈[0,
π
2
],
當(dāng)x=
3
時,f(x)的最小值是2;當(dāng)x=
6
時,f(x)的最大值是4.
(Ⅱ)∵f(x)=2sin(x-
π
3
)+2
的周期T=2π,∴β=2π,
由此可得
a
b
=2+cosα•tan(α+
β
2
)=2+cosαtan(α+π)=2+sinα=
7
3
,解之得sinα=
1
3

2cos2α-sin2(α+β)
cosα-sinα
=
2cos2α-sin2(α+π)
cosα-sinα
=
2cos2α-sin2α
cosα-sinα
=
2cos α(cosα-sinα)
cosα-sinα
=2cosα,
0<α<
π
4
,可得cosα=
1-sin2α
=
2
2
3
,
2cos2α-sin2(α+β)
cosα-sinα
=2cosα=
4
2
3
點評:本題將一個三角函數(shù)式化簡,求函數(shù)在閉區(qū)間上的最值,并且在已知向量數(shù)量積的情況下,求三角函數(shù)分式的值.著重考查了三角恒等變換公式、三角函數(shù)的圖象與性質(zhì)、同角三角函數(shù)的基本關(guān)系與誘導(dǎo)公式等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(附加題)
(Ⅰ)設(shè)非空集合S={x|m≤x≤l}滿足:當(dāng)x∈S時有x2∈S,給出下列四個結(jié)論:
①若m=2,則l=4
②若m=-
1
2
,則
1
4
≤l≤1

③若l=
1
2
,則-
2
2
≤m≤0
④若m=1,則S={1},
其中正確的結(jié)論為
②③④
②③④

(Ⅱ)已知函數(shù)f(x)=x+
a
x
+b(x≠0)
,其中a,b∈R.若對于任意的a∈[
1
2
,2]
,f(x)≤10在x∈[
1
4
,1]
上恒成立,則b的取值范圍為
(-∞,
7
4
]
(-∞,
7
4
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將正奇數(shù)列{2n-1}中的所有項按每一行比上一行多一項的規(guī)則排成如下數(shù)表:
記aij是這個數(shù)表的第i行第j列的數(shù).例如a43=17
(Ⅰ)  求該數(shù)表前5行所有數(shù)之和S;
(Ⅱ)2009這個數(shù)位于第幾行第幾列?
(Ⅲ)已知函數(shù)f(x)=
3x
3n
(其中x>0),設(shè)該數(shù)表的第n行的所有數(shù)之和為bn
數(shù)列{f(bn)}的前n項和為Tn,求證Tn
2009
2010

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•開封二模)已知函數(shù)f(x)=sin(x+
π
6
)+2sin2
x
2

(I)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(II)記△ABC的內(nèi)角A、B、C所對的邊長分別為a、b、c若f(A)=
3
2
,△ABC的面積S=
3
2
,a=
3
,求b+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•黑龍江一模)已知函數(shù)f(x)=
3
2
sinxcosx-
3
2
sin2x+
3
4

(Ⅰ) 求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)已知△ABC中,角A,B,C所對的邊長分別為a,b,c,若f(A)=0,a=
3
,b=2
,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃山模擬)已知函數(shù)f(x)=ln2(1+x),g(x)=
x2
1+x

(Ⅰ)分別求函數(shù)f(x)和g(x)的圖象在x=0處的切線方程;
(Ⅱ)證明不等式ln2(1+x)≤
x2
1+x
;
(Ⅲ)對一個實數(shù)集合M,若存在實數(shù)s,使得M中任何數(shù)都不超過s,則稱s是M的一個上界.已知e是無窮數(shù)列an=(1+
1
n
)n+a
所有項組成的集合的上界(其中e是自然對數(shù)的底數(shù)),求實數(shù)a的最大值.

查看答案和解析>>

同步練習(xí)冊答案