分析 (1)由橢圓離心率可得a,b的關(guān)系,聯(lián)立直線方程和橢圓方程,結(jié)合直線y=x被橢圓C截得的弦長為$\frac{{4\sqrt{10}}}{5}$求得a,b的值,則橢圓方程可求;
(2)設(shè)A(x1,y1),D(x2,y2),則B(-x1,-y1),可得${k_{AD}}=-\frac{x_1}{y_1}$,設(shè)直線AD的方程為y=kx+m,聯(lián)立$\left\{\begin{array}{l}y=kx+m\\ \frac{x^2}{4}+{y^2}=1\end{array}\right.$,消去y得(1+4k2)x2+8kmx+4m2-4=0.求出BD所在直線的斜率,得到BD的方程,分別求出M,N的坐標(biāo),代入三角形面積公式,利用基本不等式求得最值.
解答 解:(1)由題意知,$\frac{c}{a}=\frac{{\sqrt{{a^2}-{b^2}}}}{a}=\frac{{\sqrt{3}}}{2}$,可得a2=4b2,
聯(lián)立$\left\{\begin{array}{l}{x^2}+4{y^2}={a^2}\\ y=x\end{array}\right.$,得$x=±\frac{{\sqrt{5}}}{5}a$,
∴$|{AB}|=\sqrt{1+1}\frac{{2\sqrt{5}a}}{5}=\frac{{4\sqrt{10}}}{5}$,解得a=2.
∴橢圓方程為$\frac{x^2}{4}+{y^2}=1$;
(2)設(shè)A(x1,y1),D(x2,y2),則B(-x1,-y1),
∴${k_{AB}}=\frac{y_1}{x_1}$,且AB⊥AD,則${k_{AD}}=-\frac{x_1}{y_1}$,
設(shè)直線AD的方程為y=kx+m,由題意知k≠0,m≠0,
聯(lián)立$\left\{\begin{array}{l}y=kx+m\\ \frac{x^2}{4}+{y^2}=1\end{array}\right.$,消去y得(1+4k2)x2+8kmx+4m2-4=0.
∴${x_1}+{x_2}=-\frac{8mk}{{1+4{k^2}}}$,${y_1}+{y_2}=k({x_1}+{x_2})+2m=\frac{2m}{{1+4{k^2}}}$,
∴${k_{BD}}=\frac{{{y_1}+{y_2}}}{{{x_1}+{x_2}}}=-\frac{1}{4k}=\frac{y_1}{{4{x_1}}}$,
∴直線BD的方程為$y+{y_1}=\frac{y_1}{{4{x_1}}}(x+{x_1})$,
令y=0,得x=3x1,即M(3x1,0).
令x=0,得$y=-\frac{3}{4}{y_1}$,即M(3x1,0).
∴${S_{△OMN}}=\frac{1}{2}×3|{x_1}|×\frac{3}{4}|{y_1}|=\frac{9}{8}|{x_1}||{y_1}|$.
又∵$|{x_1}||{y_1}|≤\frac{{{x_1}^2}}{4}+{y_1}^2=1$,當(dāng)且僅當(dāng)$\frac{{|{x_1}|}}{2}=|{y_1}|=\frac{{\sqrt{2}}}{2}$時,等號成立.
∴△OMN面積的最大值為$\frac{9}{8}$.
點(diǎn)評 本題考查橢圓的簡單性質(zhì),考查了直線與橢圓位置關(guān)系的應(yīng)用,訓(xùn)練了利用基本不等式求最值,體現(xiàn)了“設(shè)而不求”的解題思想方法,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,π) | B. | [0,$\frac{π}{4}$] | C. | [0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,π) | D. | [0,$\frac{π}{4}$]∪($\frac{π}{2}$,π) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=|x| | B. | $y=-\frac{1}{x}$ | C. | y=2-x | D. | y=x3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 16 | B. | 20 | C. | 24 | D. | 18 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com