【題目】已知橢圓的離心率為,左、右焦點(diǎn)分別為、為橢圓上異于長軸端點(diǎn)的點(diǎn),且的最大面積為.

1)求橢圓的標(biāo)準(zhǔn)方程

2)若直線是過點(diǎn)點(diǎn)的直線,且與橢圓交于不同的點(diǎn),是否存在直線使得點(diǎn)到直線,的距離、,滿足恒成立,若存在,求的值,若不存在,說明理由.

【答案】1;(2)存在,且.

【解析】

1)根據(jù)題意列出有關(guān)、的方程組,求出這三個(gè)量的值,即可得出橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)直線的方程為,設(shè)點(diǎn)、,將直線的方程與橢圓方程聯(lián)立,并列出韋達(dá)定理,由,得出,通過化簡計(jì)算并代入韋達(dá)定理計(jì)算出的值,即可得出直線的方程,即可說明直線的存在性.

1)設(shè)橢圓的焦距為,且的最大面積為,則,

由已知條件得,解得,因此,橢圓的標(biāo)準(zhǔn)方程為;

2)當(dāng)直線不與軸重合時(shí),設(shè)直線的方程為,設(shè)點(diǎn)、,

將直線的方程與橢圓方程聯(lián)立,消去并整理得,

由韋達(dá)定理得,.

,即,即,

整理得;

當(dāng)直線軸重合時(shí),則直線與橢圓的交點(diǎn)為左、右頂點(diǎn),設(shè)點(diǎn)、

,,由,得,解得.

綜上所述,存在直線,使得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,以相同的長度單位建立極坐標(biāo)系.己知直線的直角坐標(biāo)方程為,曲線C的極坐標(biāo)方程為

1)設(shè)t為參數(shù),若,求直線的參數(shù)方程和曲線C的直角坐標(biāo)方程;

2)已知:直線與曲線C交于AB兩點(diǎn),設(shè),且,,依次成等比數(shù)列,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某部門參加職業(yè)技能測(cè)試的2000名員工中抽取100名員工,將其成績(滿分100分)按照[50,60),[60,70),[70,80),[80,90),[90,100)分成5組,得到如圖所示的頻率分布直方圖.

1)估計(jì)該部門參加測(cè)試員工的成績的眾數(shù)中位數(shù);

2)估計(jì)該部門參加測(cè)試員工的平均成績;

3)若成績?cè)?/span>80分及以上為優(yōu)秀,請(qǐng)估計(jì)該部門2000名員工中成績達(dá)到優(yōu)秀的人數(shù)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值衡量,并依據(jù)質(zhì)量指標(biāo)值劃分等級(jí)如下表:

從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取200件,檢測(cè)后得到如下的頻率分布直方圖:

(1)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“一、二等品至少要占全部產(chǎn)品”的規(guī)定?

(2)在樣本中,按產(chǎn)品等級(jí)用分層抽樣的方法抽取8件,再從這8件產(chǎn)品中隨機(jī)抽取4件,求抽取的4件產(chǎn)品中,一、二、三等品都有的概率;

(3)該企業(yè)為提高產(chǎn)品質(zhì)量,開展了“質(zhì)量提升月”活動(dòng),活動(dòng)后再抽樣檢測(cè),產(chǎn)品質(zhì)量指標(biāo)值近似滿足,則“質(zhì)量提升月”活動(dòng)后的質(zhì)量指標(biāo)值的均值比活動(dòng)前大約提升了多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對(duì)邊分別為,且

(1)求的值;

(2)若,求三角形ABC的面積的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面四邊形ABCD中, AB=2,BD=,AB⊥BC,∠BCD=2∠ABD,△ABD的面積為2.

(1)求AD的長;

(2)求△CBD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的圖象在點(diǎn)處切線的方程;

(2)討論函數(shù)的極值;

(3)若對(duì)任意的成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項(xiàng)等差數(shù)列的前項(xiàng)和為,若,且成等比數(shù)列.

(1)求的通項(xiàng)公式;

(2)設(shè),記數(shù)列的前項(xiàng)和為,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為奇函數(shù).

1)求常數(shù)的值;

2)判斷并用定義法證明函數(shù)的單調(diào)性;

3)函數(shù)的圖象由函數(shù)的圖象先向右平移個(gè)單位,再向上平移個(gè)單位得到,寫出的一個(gè)對(duì)稱中心,若,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案