分析:(1)利用數(shù)列遞推式,確定k+1=a
2=2k,即可求得結(jié)論;
(2)利用疊乘法,可求數(shù)列{a
n}的通項(xiàng)公式;
(3)分類討論,利用錯(cuò)位相減法可求數(shù)列
{}的前n項(xiàng)和.
解答:(1)證明:∵
=kn+1,∴
=a2=k+1,
又∵
a1=1,an+1an-1=anan-1+(n∈N
+,n≥2)
∴
a3a1=a2a1+,∴
=a2+1,
∵
=2k+1,∴a
2=2k.
∴k+1=a
2=2k,∴k=1.
(2)解:
=n+1,
an=••…••a1=n•(n-1)•…•2•1=n!
(3)解:設(shè)數(shù)列
{}的前n項(xiàng)和為S
n,
因?yàn)?span id="g0mwggw" class="MathJye">
=n
xn-1,所以,當(dāng)x=1時(shí),
Sn=,
當(dāng)x≠1時(shí),
Sn=1+2x+3x2+…+nxn-1①
①•x得
Sn=x+2x2+3x3+…+(n-1)xn-1+nx
n②
由①-②得:
(1-x)Sn=1+x+x2+…+xn-1-
nxn=-nxn∴
Sn=-綜上所述:S
n=
點(diǎn)評(píng):本題考查數(shù)列遞推式,考查疊乘法的運(yùn)用,考查錯(cuò)位相減法求數(shù)列的和,正確運(yùn)用求通項(xiàng)與求和的方法是關(guān)鍵.