已知,內有一動點P,MN,且四邊形PMON的面積等于4,今以O為原點,的平分線為極軸(如圖),求動點P的軌跡方程。
P點坐標為(,0),
    ∴,,
    故四邊形PMON的面積
     
     
    ∴點極坐標為方程,
    若化為直角坐標方程即是雙曲線右支。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的左、右焦點分別為F1、F2,短軸端點分別為A、B,且四邊形F1AF2B是邊長為2的正方形
(I)求橢圓的方程;
(II)若C、D分別是橢圓長軸的左、右端點,動點M滿足,連結CM交橢圓于P,證明為定值(O為坐標原點);
(III)在(II)的條件下,試問在x軸上是否存在異于點C的定點Q,使以線段MP為直徑的圓恒過直線DP、MQ的交點,若存在,求出Q的坐標,若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
   如圖,橢圓的一個焦點是F(1,0),O為坐標原點。
              
(Ⅰ)已知橢圓短軸的兩個三等分點與一個焦點構成正三角形,求橢圓的方程;
(Ⅱ)設過點F的直線l交橢圓于A、B兩點,若直線l繞點F任意轉動,值有,求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

求過點A(1,-1),B(-1,1)且圓心在直線x+y-2=0上的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的中心在原點,焦點在軸上,橢圓上的點到焦點的距離的最小值為,離心率為
(1)求橢圓的方程;
(2)過點作直線兩點,試問:在軸上是否存在一個定點,使為定值?若存在,求出這個定點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

 內有一點,AB為過點且傾斜角為α的弦,
(1) 當時,求AB的長;
(2)當弦AB被點平分時,寫出直線AB 的方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,所在的平面和四邊形所在的平面垂直,且,,,,則點在平面內的軌跡是 (   )
A.圓的一部分
B.橢圓的一部分
C.雙曲線的一部分
D.拋物線的一部分

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知雙曲線的方程為, 直線通過其右焦點F2,且與雙曲線的右支交于A、B兩點,將AB與雙曲線的左焦點F1連結起來,求|F1A|·|F1B|的最小值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知直線l:ax+y-2-a=0在x軸和y軸上的截距相等,則a的值是(  )
A.1B.-1C.-2或-1D.-2或1

查看答案和解析>>

同步練習冊答案