已知函數(shù)f(x)=
sinx,sinx>cosx
cosx,sinx≤cosx
,關(guān)于f(x)的敘述:
①是周期函數(shù),最小正周期為2π
②有最大值1和最小值-1
③有對稱軸
④有對稱中心
⑤在[
π
2
,π]
上單調(diào)遞減.
其中正確的命題序號是
①③⑤
①③⑤
.(把所有正確命題的序號都填上)
分析:f(x)的含義是取y=sinx和y=cosx的較大者,所以先在同一坐標(biāo)系內(nèi)畫出y=sinx和y=cosx的圖象,然后取上方的部分,就得到f(x)的圖象.畫出圖象來之后,就很容易的找出單調(diào)區(qū)間,最大最小值,同時也容易得出周期來.
解答:解:作出函數(shù)f(x)的圖象,實線即為f(x)的圖象.
由圖象可知,f(x)為周期函數(shù),T=2π,所以①正確.
函數(shù)f(x)的最大值為1,最小值為-
2
2
,所以②錯誤.
函數(shù)的對稱軸為x=
4
+2kπ
,所以③正確.
由圖象可知,函數(shù)無對稱中心,所以④錯誤.
[
π
2
,π]
上單調(diào)遞減,所以⑤正確.
故答案為:①③⑤.
點評:本題主要考查三角函數(shù)的圖象和性質(zhì),作出函數(shù)的圖象,利用數(shù)形結(jié)合的思想去研究,是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(附加題)
(Ⅰ)設(shè)非空集合S={x|m≤x≤l}滿足:當(dāng)x∈S時有x2∈S,給出下列四個結(jié)論:
①若m=2,則l=4
②若m=-
1
2
,則
1
4
≤l≤1

③若l=
1
2
,則-
2
2
≤m≤0
④若m=1,則S={1},
其中正確的結(jié)論為
②③④
②③④

(Ⅱ)已知函數(shù)f(x)=x+
a
x
+b(x≠0)
,其中a,b∈R.若對于任意的a∈[
1
2
,2]
,f(x)≤10在x∈[
1
4
,1]
上恒成立,則b的取值范圍為
(-∞,
7
4
]
(-∞,
7
4
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將正奇數(shù)列{2n-1}中的所有項按每一行比上一行多一項的規(guī)則排成如下數(shù)表:
記aij是這個數(shù)表的第i行第j列的數(shù).例如a43=17
(Ⅰ)  求該數(shù)表前5行所有數(shù)之和S;
(Ⅱ)2009這個數(shù)位于第幾行第幾列?
(Ⅲ)已知函數(shù)f(x)=
3x
3n
(其中x>0),設(shè)該數(shù)表的第n行的所有數(shù)之和為bn,
數(shù)列{f(bn)}的前n項和為Tn,求證Tn
2009
2010

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•開封二模)已知函數(shù)f(x)=sin(x+
π
6
)+2sin2
x
2

(I)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(II)記△ABC的內(nèi)角A、B、C所對的邊長分別為a、b、c若f(A)=
3
2
,△ABC的面積S=
3
2
,a=
3
,求b+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•黑龍江一模)已知函數(shù)f(x)=
3
2
sinxcosx-
3
2
sin2x+
3
4

(Ⅰ) 求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)已知△ABC中,角A,B,C所對的邊長分別為a,b,c,若f(A)=0,a=
3
,b=2
,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃山模擬)已知函數(shù)f(x)=ln2(1+x),g(x)=
x2
1+x

(Ⅰ)分別求函數(shù)f(x)和g(x)的圖象在x=0處的切線方程;
(Ⅱ)證明不等式ln2(1+x)≤
x2
1+x
;
(Ⅲ)對一個實數(shù)集合M,若存在實數(shù)s,使得M中任何數(shù)都不超過s,則稱s是M的一個上界.已知e是無窮數(shù)列an=(1+
1
n
)n+a
所有項組成的集合的上界(其中e是自然對數(shù)的底數(shù)),求實數(shù)a的最大值.

查看答案和解析>>

同步練習(xí)冊答案