數(shù)列{an}是首項(xiàng)為0的等差數(shù)列,數(shù)列{bn}是首項(xiàng)為1的等比數(shù)列,設(shè)cn=an+bn,數(shù)列{cn}的前三項(xiàng)依次為1,1,2.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式.
(2)求數(shù)列{cn}的前n項(xiàng)的和.
(1)設(shè)數(shù)列{an}的公差為d,數(shù)列{bn}的公比為q,由題意得
d+q=1
2d+q2=2
,解得
d=1
q=0
(舍)
 或
d=-1
q=2
,
則an=1-n,bn=2n-1
(2)由(1)知,cn=an+bn=2n-1-n+1
∴數(shù)列{cn}的前n項(xiàng)的和
Sn=(20+21+…+2n-1)-(1+2+3+…+n)+n
=
20(1-2n)
1-2
-
n(1+n)
2
+n
=
n-n2
2
+2n-1

Sn=
n-n2
2
+2n-1
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果一個(gè)數(shù)列的各項(xiàng)都是實(shí)數(shù),且從第二項(xiàng)開(kāi)始,每一項(xiàng)與它前一項(xiàng)的平方差是相同的常數(shù),則稱該數(shù)列為等方差數(shù)列,這個(gè)常數(shù)叫這個(gè)數(shù)列的公方差.
(1)設(shè)數(shù)列{an}是公方差為p的等方差數(shù)列,求an和an-1(n≥2,n∈N)的關(guān)系式;
(2)若數(shù)列{an}既是等方差數(shù)列,又是等差數(shù)列,證明該數(shù)列為常數(shù)列;
(3)設(shè)數(shù)列{an}是首項(xiàng)為2,公方差為2的等方差數(shù)列,若將a1,a2,a3,…,a10這種順序的排列作為某種密碼,求這種密碼的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果一個(gè)數(shù)列的通項(xiàng)公式是an=k•qn(k,q為不等于零的常數(shù))則下列說(shuō)法中正確的是(  )
A、數(shù)列{an}是首項(xiàng)為k,公比為q的等比數(shù)列B、數(shù)列{an}是首項(xiàng)為kq,公比為q的等比數(shù)列C、數(shù)列{an}是首項(xiàng)為kq,公比為q-1的等比數(shù)列D、數(shù)列{an}不一定是等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}是首項(xiàng)為1的實(shí)數(shù)等比數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和,若28S3=S6,則數(shù)列{
1
an
}的前四項(xiàng)的和為
40
27
40
27

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•杭州二模)設(shè)數(shù)列{an}是首項(xiàng)為1的等比數(shù)列,若{
1
2an+an+1
}
是等差數(shù)列,則(
1
2a1
+
1
a2
)+(
1
2a2
+
1
a3
)
+…+(
1
2a2012
+
1
a2013
)
的值等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}是首項(xiàng)為a1,公差為d的等差數(shù)列,若數(shù)列{an}中任意不同的兩項(xiàng)之和仍是該數(shù)列的一項(xiàng),則稱該數(shù)列是“封閉數(shù)列”
(1)試寫(xiě)出一個(gè)不是“封閉數(shù)列”的等差數(shù)列的通項(xiàng)公式,并說(shuō)明理由;
(2)求證:數(shù)列{an}為“封閉數(shù)列”的充分必要條件是存在整數(shù)m≥-1,使a1=md.

查看答案和解析>>

同步練習(xí)冊(cè)答案