已知函數(shù)f(x)=x3+2xf′(-1),則函數(shù)f(x)在區(qū)間[-2,3]的值域是
 
考點:導數(shù)的運算,利用導數(shù)研究函數(shù)的單調性
專題:導數(shù)的概念及應用
分析:根據(jù)題意,利用公式求函數(shù)的導數(shù),求出導數(shù)等于0時x的值,代入函數(shù)求出函數(shù)值,再求出端點值,比較極值與端點值的大小得出最大值和最小值
解答: 解:f′(x)=3x2+2f′(-1),
則f′(-1)=3+2f′(-1),
∴f′(-1)=-3,
∴f′(x)=3x2-6,
令f′(x)=0,解得:x=±
2

令f′(x)>0,解得x>
2
或x<-
2

令f′(x)<0,解得-
2
<x<
2
,
當x=-2時f(x)=4,當x=-
2
時,f(x)=4
2
,當x=
2
時,f(x)=-4
2
,當x=3時,f(x)=9,
∴f(x)在閉區(qū)間[-2,3上的最大值9,最小值是-4
2

∴函數(shù)f(x)在區(qū)間[-2,3]的值域是
故答案為:[-4
2
,9]
點評:該題考查函數(shù)求導,以及極值和最值的求解,屬于簡單題,基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的前n項和為Sn,且滿足3Sn=4028+an(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)設f(n)表示該數(shù)列的前n項的乘積,問n取何值時,f(n)有最大值?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且Sn+1=2an,求使不等式
a
2
1
+
a
2
2
+…+
a
2
n
<5×2n+1成立的n的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線y2=2px的焦點F與雙曲線
x2
7
-
y2
9
=1的右焦點重合,拋物線的準線與x軸的焦點為K,點A在拋物線上,且|AK|=
2
|AF|,則△AFK的面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=sin(x+
π
3
)+asin(x-
π
6
)的一條對稱軸方程為x=
π
2
,則a=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在x軸的正方向上,從左向右依次取點列{Aj},j=1,2…,以及在第一象限內的拋物線y2=
3
2
x上從左向右依次取點列{Bk},k=1,2…,使△Ak-1BkAk(k=1,2…)都是等邊三角形,其中A0是坐標原點,則第2005個等邊三角形的邊長是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某幾何體的三視圖及部分數(shù)據(jù)如圖所示,則此幾何體的體積是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設m、n為實數(shù),且直線mx+ny=2和圓x2+y2=2沒有公共點,則關于x的方程x2+2mx+n=0有實根的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線Ax+By+C=0與圓x2+y2=1相交于P,Q兩點,其中A2,C2,B2成等差數(shù)列,O為坐標原點,則
OP
PQ
=
 

查看答案和解析>>

同步練習冊答案