如圖,在直三棱柱ABC-A1B1C1中,AC=BC,點(diǎn)D為AB的中點(diǎn).
(1)求證:AC1平面CDB1;
(2)求證:平面CDB1⊥平面ABB1A1
證明:(1)連接C1B交CB1于點(diǎn)O.
∵D,O分別是AB,C1B的中點(diǎn),∴AC1DO,
∵AC1?平面CDB1,DO?平面CDB1,
∴AC1平面CDB1;
(2)∵AA1⊥底面ABC,∴AA1⊥CD
∵AC=BC,D為AB的中點(diǎn),
∴CD⊥AB
∵AA1∩AB=A,
∴CD⊥平面ABB1A1,
∵CD?平面CDB1,
∴平面CDB1⊥平面ABB1A1
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AB為圓O的直徑,點(diǎn)C為圓O上異于A、B的一點(diǎn),PA⊥平面ABC,點(diǎn)A在PB、PC上的射影分別為點(diǎn)E、F.
(1)求證:PB⊥平面AFE;
(2)若AB=4,PA=3,BC=2,求三棱錐C-PAB的體積與此三棱錐的外接球(即點(diǎn)P、A、B、C都在此球面上)的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,在四棱錐P-ABCD中,底面ABCD是菱形,∠BAD=60°AB=PA=2,PA⊥平面ABCD,E是PC的中點(diǎn),F(xiàn)是AB的中點(diǎn).
(1)求證:BE平面PDF;
(2)求證:平面PDF⊥平面PAB;
(3)求BE與平面PAC所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在三棱錐P-ABC中,E,F(xiàn)分別為AC,BC的中點(diǎn).
(1)求證:EF平面PAB;
(2)若平面PAC⊥平面ABC,且PA=PC,∠ABC=90°,求證:平面PEF⊥平面PBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AB,CD均為圓O的直徑,CE⊥圓O所在的平面,BFCE.求證:
(1)平面BCEF⊥平面ACE;
(2)直線DF平面ACE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知某幾何體的三視圖如圖所示,其中左視圖是邊長(zhǎng)為2的正三角形,主視圖是矩
形,且AA1=3,設(shè)D為AA1的中點(diǎn).
(1)作出該幾何體的直觀圖并求其體積;
(2)求證:平面BB1C1C⊥平面BDC1;
(3)BC邊上是否存在點(diǎn)P,使AP平面BDC1?若不存在,說(shuō)明理由;若存在,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在棱錐P-ABCD中,側(cè)面PDC是邊長(zhǎng)為2的正三角形,且與底面垂直,底面ABCD是菱形,且∠ADC=60°,M為PB的中點(diǎn),
(1)求證:PA⊥CD;
(2)求二面角P-AB-D的大;
(3)求證:平面CDM⊥平面PAB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示的四棱錐P-ABCD中,底面ABCD為菱形,PA⊥平面ABCD,E為PC的中點(diǎn),求證:
(1)PA平面BDE;
(2)平面PAC⊥平面PBD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,直三棱柱中,AB=1,BC=2,,M為線段上的一動(dòng)點(diǎn),當(dāng)最小時(shí),點(diǎn)C到平面的距離為(   )
A.6B.3 C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案