【題目】已知關(guān)于的不等式.
(1)當(dāng)時(shí),解不等式;
(2)如果不等式的解集為空集,求實(shí)數(shù)的取值范圍.
【答案】(1) ;(2) .
【解析】試題分析:(1)當(dāng)時(shí),不等式變?yōu)?/span>。由絕對(duì)值的意義,按絕對(duì)值號(hào)內(nèi)的的正負(fù),分三種情況討論:當(dāng)時(shí),不等式變?yōu)?/span>;當(dāng)時(shí),不等式變?yōu)?/span>,恒成立,所以符合不等式;當(dāng)時(shí),不等式變?yōu)?/span>。取三種情況的并集,可得原不等式的解集。(2)解法一:構(gòu)造函數(shù)與,原不等式的解集為空集, 的最小值比大于或等于,作出與的圖象. 只須的圖象在的圖象的上方,或與重合, 。解法二:構(gòu)造函數(shù),討論絕對(duì)值號(hào)內(nèi)式子得正負(fù)去掉絕對(duì)值可得, ,求每一段函數(shù)的值域,可得函數(shù)的最小值=1, 小于等于函數(shù)的最小值1.解法三,由不等式可得,當(dāng)且僅當(dāng)時(shí),上式取等號(hào),∴.
試題解析:解:(1)原不等式變?yōu)?/span>.
當(dāng)時(shí),原不等式化為,解得,∴
當(dāng)時(shí),原不等式化為,∴ .
當(dāng)時(shí),原不等式化為,解得,∴ .
綜上,原不等式解集為.
(2)解法一:作出與的圖象.
若使解集為空集,
只須的圖象在的圖象的上方,或與重合,
∴,所以的范圍為.
解法二: ,
當(dāng)時(shí), ,
當(dāng)時(shí), ,
當(dāng)時(shí), ,
綜上,原問(wèn)題等價(jià)于,∴ .
解法三:∵,當(dāng)且僅當(dāng)時(shí),上式取等號(hào),∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出以下四個(gè)命題:
(1)命題,使得,則,都有;
(2)已知函數(shù)f(x)=|log2x|,若a≠b,且f(a)=f(b),則ab=1;
(3)若平面α內(nèi)存在不共線的三點(diǎn)到平面β的距離相等,則平面α平行于平面β;
(4)已知定義在上的函數(shù) 滿足條件 ,且函數(shù) 為奇函數(shù),則函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱(chēng).
其中真命題的序號(hào)為______________.(寫(xiě)出所有真命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-5 不等式選講
已知函數(shù).
(1)若不等式的解集為,求實(shí)數(shù)的值;
(2)在(1)的條件下,若,使得,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩個(gè)不共線的向量滿足, , .
(1)若與垂直,求的值;
(2)當(dāng)時(shí),若存在兩個(gè)不同的使得成立,求正數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)= 為奇函數(shù),a為常數(shù),
(1)求a的值;
(2)證明f(x)在區(qū)間(1,+∞)上單調(diào)遞增;
(3)若x∈[3,4],不等式f(x)>( )x+m恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】海中一小島的周?chē)?/span> 內(nèi)有暗礁,海輪由西向東航行至處測(cè)得小島位于北偏東,航行8后,于處測(cè)得小島在北偏東(如圖所示).
(1)如果這艘海輪不改變航向,有沒(méi)有觸礁的危險(xiǎn)?請(qǐng)說(shuō)明理由.
(2)如果有觸礁的危險(xiǎn),這艘海輪在處改變航向?yàn)闁|偏南()方向航行,求的最小值.
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax+xlnx(a∈R)
(1)若函數(shù)f(x)在區(qū)間[e,+∞)上為增函數(shù),求a的取值范圍;
(2)當(dāng)a=1且k∈Z時(shí),不等式k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,求k的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(2)設(shè),當(dāng)時(shí),若對(duì)任意,當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com