若函數(shù)y=x2的定義域和值域均為[a,b],試探究區(qū)間[a,b]是否存在?并說明理由.
分析:函數(shù)y=x2的定義域和值域均為[a,b]可得到一個(gè)隱含條件a≥0,從而簡(jiǎn)化問題,只要考慮函數(shù)在[0,+∝)的單調(diào)性即可.
解答:解:由函數(shù)y=x2≥0可知a≥0,由定義域和值域均為[a,b],
a2=a
b2=b

∵a<b,
解上述方程組得a=0,b=1.
即存在這樣的區(qū)間[0,1]滿足條件.
點(diǎn)評(píng):本題主要考查函數(shù)的值域問題,屬于一道探究性問題,解決這類問題的基本策略是:執(zhí)果索因,先尋找結(jié)論成立的必要條件,再通過檢驗(yàn)或認(rèn)證找到結(jié)論成立的充分條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于定義在[a,b]上的兩個(gè)函數(shù)f(x)與g(x),如果對(duì)于任意x∈[a,b],均有|f(x)-g(x)|≤1,則稱f(x)與g(x)在[a,b]上是接近的.若函數(shù)y=x2-4x+2與函數(shù)y=4x+m在區(qū)間[3,5]上是接近的,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a
=(x1,y1),
b
=(x2,y2),定義:
a
b
=x1x2+y1y2,已知
a
=(2cosx,1),
b
=(cosx,
3
sin2x),f(x)=
a
b
,x∈R
(1)若f(x)=1-
3
,且x∈[-
π
3
,
π
3
]
,求x;
(2)若函數(shù)y=2sin2x的圖象向左(或右)平移|m|(|m|<
π
2
)
個(gè)單位,再向上(或下)平移|n|個(gè)單位后得到函數(shù)y=f(x)的圖象,求實(shí)數(shù)m,n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于定義在[a,b]上的兩個(gè)函數(shù)f(x)與g(x),如果對(duì)于任意x∈[a,b],均有|f(x)-g(x)|≤1,則稱f(x)與g(x)在[a,b]上是接近的.若函數(shù)y=x2-2x+2與函數(shù)y=2x+m在區(qū)間[1,3]上是接近的,則實(shí)數(shù)m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:
①函數(shù)y=-
1x
在R上單調(diào)遞增;
②若函數(shù)y=x2+2ax+1在(-∞,-1]上單調(diào)遞減,則a≤1;
③若log0.7(2m)<log0.7(m-1),則m>-1;
④若f(x)是定義在R上的奇函數(shù),則f(1-x)+f(x-1)=0.
其中正確的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省四地六校高三(上)第一次聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

對(duì)于定義在[a,b]上的兩個(gè)函數(shù)f(x)與g(x),如果對(duì)于任意x∈[a,b],均有|f(x)-g(x)|≤1,則稱f(x)與g(x)在[a,b]上是接近的.若函數(shù)y=x2-4x+2與函數(shù)y=4x+m在區(qū)間[3,5]上是接近的,則實(shí)數(shù)m的取值范圍是   

查看答案和解析>>

同步練習(xí)冊(cè)答案