7.已知O為坐標原點,F(xiàn)是雙曲線$Γ:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左焦點,A,B分別為Γ的左、右頂點,P為Γ上一點,且PF⊥x軸,過點A的直線l與線段PF交于點M,與y軸交于點E,直線 BM與y軸交于點N,若|OE|=2|ON|,則 Γ的離心率為( 。
A.3B.2C.$\frac{3}{2}$D.$\frac{4}{3}$

分析 根據(jù)條件分別求出直線AE和BN的方程,求出N,E的坐標,利用|OE|=2|ON|的關(guān)系建立方程進行求解即可.

解答 解:∵PF⊥x軸,
∴設(shè)M(-c,t),則A(-a,0),B(a,0),
AE的斜率k=$\frac{t}{a-c}$,則AE的方程為y=$\frac{t}{a-c}$(x+a),
令x=0,則y=$\frac{ta}{a-c}$,即E(0,$\frac{ta}{a-c}$),
BN的斜率k=-$\frac{t}{a+c}$,則BN的方程為y=-$\frac{t}{a+c}$(x-a),
令x=0,則y=$\frac{ta}{a+c}$,即N(0,$\frac{ta}{a+c}$),
∵|OE|=2|ON|,
∴2|$\frac{ta}{a+c}$|=|$\frac{ta}{a-c}$|,
即$\frac{2}{a+c}$=$\frac{1}{c-a}$,
則2(c-a)=a+c,
即c=3a,
則離心率e=$\frac{c}{a}$=3,
故選:A

點評 本題主要考查雙曲線離心率的計算,根據(jù)條件求出直線方程和點N,E的坐標是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

17.若函數(shù)f(x)=x2-a|x|+a2-3有且只有一個零點,則實數(shù)a=( 。
A.$\sqrt{3}$B.-$\sqrt{3}$C.2D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知f(x)=(x2-2x)ex(其中e是自然對數(shù)的底數(shù)),f'(x)為f(x)的導函數(shù),則f'(0)的值為-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知向量$\overrightarrow a\;,\;\overrightarrow b$是單位向量,$\overrightarrow a•\overrightarrow b=0$,若$|{\overrightarrow c-\overrightarrow a-\overrightarrow b}|=1$,則$|{\overrightarrow c}|$的最大值為(  )
A.2B.$\sqrt{2}$C.3D.$\sqrt{2}+1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.《九章算術(shù)》中,將底面是直角三角形的直三棱柱稱之為“塹堵”,已知某“塹堵”的三視圖如圖所示,則該“塹堵”的表面積為(  )
A.4B.$6+4\sqrt{2}$C.$4+4\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.在△ABC中,若a=1,b=2,cosA=$\frac{2\sqrt{2}}{3}$,則sinB=( 。
A.$\frac{\sqrt{2}}{6}$B.$\frac{1}{3}$C.$\frac{\sqrt{2}}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.正實數(shù)ab滿足$\frac{1}{a}$+$\frac{2}$=1,則(a+2)(b+4)的最小值為(  )
A.16B.24C.32D.40

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.將直線y=2x繞原點逆時針旋轉(zhuǎn)90°,再向右平移1個單位,所得到的直線為( 。
A.$y=-\frac{1}{2}x+\frac{1}{2}$B.$y=-\frac{1}{2}x+1$C.y=2x-2D.$y=\frac{1}{2}x+1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.若把英文單詞“error”中的字母的拼寫順序?qū)戝e了,則可能出現(xiàn)錯誤的種數(shù)是( 。
A.20種B.19種C.10種D.9種

查看答案和解析>>

同步練習冊答案