(2011•湖南模擬)選做題:(坐標(biāo)系與參數(shù)方程)在極坐標(biāo)系(ρ,θ)(0<θ≤2π)中,曲線ρ(cosθ+sinθ)=2與ρ(sinθ-cosθ)=2的交點的極坐標(biāo)為
(2,
1
2
π)
(2,
1
2
π)
分析:先把曲線的極坐標(biāo)方程化為普通方程,求出兩曲線的交點坐標(biāo),再把點的坐標(biāo)化為極坐標(biāo).
解答:解:曲線ρ(cosθ+sinθ)=2,即 x+y=2,ρ(sinθ-cosθ)=2,即  y-x=2,
聯(lián)立方程組,解得 x=0,y=2,故兩曲線的交點坐標(biāo)為(0,2),此點在直角坐標(biāo)系中的y軸上,
故交點的極坐標(biāo)為 (2,
π
2
),
故答案為:(2,
π
2
).
點評:本題考查極坐標(biāo)與直角坐標(biāo)的互化,求兩曲線的交點的方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•湖南模擬)在極坐標(biāo)系中,已知圓ρ=2cosθ與雙曲線ρ2cos2θ-4ρ2sin2θ=4.則它們的交點的直角坐標(biāo)為
(2,0)
(2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•湖南模擬)設(shè)函數(shù)f(x)=x2+3,對任意x∈[1,+∞),f(
3
2
x
m
)+m2f(x)≥f(x-1)+3f(m)恒成立,則實數(shù)m的取值范圍是
(-∞,-
6
]∪[-
3
,0)∪(0,
3
]∪[
6
,+∞)
(-∞,-
6
]∪[-
3
,0)∪(0,
3
]∪[
6
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•湖南模擬)已知函數(shù)f(x)=(a-1)x+aln(x-2),(a<1).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)設(shè)a<0時,對任意x1、x2∈(2,+∞),
f(x1)-f(x2)x1-x2
<-4恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•湖南模擬)在區(qū)間[-3,5]上隨機取一個數(shù)x,則x∈[1,3]的概率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•湖南模擬)巳知⊙C的方程為(x-1)2+(y-1)2=1,直線L:4x+3y+m=0(其中m<-2)與x、y軸的正半軸分別相交于A、B兩點,點P(x,y)(xy>0)是線段AB上動點,如果直線L與圓C相切,則m的值等于
-12
-12
;log3x+log3y的最大值等于
1
1

查看答案和解析>>

同步練習(xí)冊答案