【題目】在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,P是曲線上的動(dòng)點(diǎn),M為線段OP的中點(diǎn),設(shè)點(diǎn)M的軌跡為曲線.
(1)求的極坐標(biāo)方程;
(2)若射線與曲線異于極點(diǎn)的交點(diǎn)為A,與曲線異于極點(diǎn)的交點(diǎn)為B,求.
【答案】(1); (2).
【解析】
(1)設(shè),則由條件知,由P是曲線上的動(dòng)點(diǎn),代入可得的極坐標(biāo)方程;
(2)將代入曲線極坐標(biāo)方程可得極徑為,將代入曲線極坐標(biāo)方程可得極徑為,可得,可得答案.
解:(1)設(shè),則由條件知,
由于P點(diǎn)在曲線上,所以,
所以,,
從而的極坐標(biāo)方程為.
(2)曲線的極坐標(biāo)方程為,
當(dāng)時(shí),代入曲線的極坐標(biāo)方程,解得,
所以射線與的交點(diǎn)A的極徑為,
曲線的極坐標(biāo)方程為.
同理可得射線與的交點(diǎn)B的極徑為.
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年8月8日是我國(guó)第十一個(gè)全民健身日,其主題是:新時(shí)代全民健身動(dòng)起來(lái).某市為了解全民健身情況,隨機(jī)從某小區(qū)居民中抽取了40人,將他們的年齡分成7段:[10,20),[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如圖所示的頻率分布直方圖.
(1)試求這40人年齡的平均數(shù)、中位數(shù)的估計(jì)值;
(2)若從樣本中年齡在[50,70)的居民中任取2人贈(zèng)送健身卡,求這2人中至少有1人年齡不低于60歲的概率;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)已知(是虛數(shù)單位)是關(guān)于的方程的根,、,求的值;
(2)已知(是虛數(shù)單位)是關(guān)于的方程的一個(gè)根,、,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,,,為的中點(diǎn),點(diǎn)在平面內(nèi)的射影在線段上.
(1)求證:;
(2)若是正三角形,求三棱柱的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中,底面,底面為正方形,,點(diǎn)為正方形內(nèi)部的一點(diǎn),且,則直線與所成角的余弦值的取值范圍為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
若,求的單調(diào)區(qū)間;
是否存在實(shí)數(shù)a,使的最小值為0?若存在,求出a的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四邊形為矩形, ,為的中點(diǎn),將沿折起,得到四棱錐,設(shè)的中點(diǎn)為,在翻折過程中,得到如下有三個(gè)命題:
①平面,且的長(zhǎng)度為定值;
②三棱錐的最大體積為;
③在翻折過程中,存在某個(gè)位置,使得.
其中正確命題的序號(hào)為__________.(寫出所有正確結(jié)論的序號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com