設(shè)A={x|x2+8x=0},B={x|x2+2(a+2)x+a2-4=0},其中a∈R,如果A∩B=B,求實(shí)數(shù)a的取值范圍。
解:∵A={x|x2+8x=0}={0,-8},A∩B=B
∴BA
當(dāng)B=時(shí),方程x2+2(a+2)x+a2-4 =0無解,即△=4(a+2)2- 4(a2-4)<0,得a<-2
當(dāng)B={0}或{8}時(shí),這時(shí)方程的判別式Δ=4(a+2)2-4(a2-4)=0,得a=-2
將a=-2代入方程,解得x=0
∴滿足當(dāng)B={0,-8}時(shí),可得a=2
綜上可得a=2或a≤-2。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}.
(1)若A=B,求實(shí)數(shù)a的值;
(2)若∅?A∩B,A∩C=∅,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A={x|x2-2x-8<0},B={x|x2+2x-3>0}C={x|x2-3ax+2a2<0}
(1)求A∩B與(?RA)∩?RB);
(2)若C⊆A∩B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}
(1)A∩B=A∪B,求a的值;
(2)若∅?(A∩B)且A∩C=∅,求a的值;
(3)A∩B=A∩C≠∅,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}.求分別滿足下列條件的a的值.
(1)A∩B=A∪B;
(2)A∩B≠φ,且A∩C=φ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A={x|x2-2x-8<0},B={x|x2+2x-3>0},
(1)若C={x|x2-3ax+2a2<0},試求實(shí)數(shù)a的取值范圍,使C⊆A且C⊆B;
(2)若C={x|x2-3ax+2a<0},試求實(shí)數(shù)a的取值范圍,使C⊆A且C⊆B.

查看答案和解析>>

同步練習(xí)冊答案