已知函數(shù)f(x)=lnx.若在區(qū)間(0,3e)上隨機(jī)取一個(gè)數(shù)x,則使得不等式f(x)≤1成立的概率為
 
考點(diǎn):幾何概型
專題:概率與統(tǒng)計(jì)
分析:求出不等式的等價(jià)條件,根據(jù)幾何概型的概率公式即可得到結(jié)論.
解答: 解:若f(x)≤1,
即lnx≤1,
則0<x≤e,
則對(duì)應(yīng)的概率P=
e
3e
=
1
3
,
故答案為:
1
3
點(diǎn)評(píng):本題主要考查幾何概型的概率計(jì)算,根據(jù)不等式求出對(duì)應(yīng)的等價(jià)條件是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,平面ABCD⊥平面ADEF,其中ABCD為矩形,ADEF為梯形,AF∥DE,AF⊥FE,AF=AD=2DE=2,M為線段AD的中點(diǎn).
(1)求直線MF與直線BD所成角的余弦值;
(2)若平面ABF與平面DBF所成角為θ,且tanθ=2
2
,求線段AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x•(
1
2
)x+
1
x+1
,點(diǎn)An為函數(shù)y=f(x)圖象上橫坐標(biāo)為n(n∈N*)的點(diǎn),O為坐標(biāo)原點(diǎn),向量
e
=(1,0).記θn為向量
OAn
e
的夾角,Sn=tanθ1+tanθ2+…+tanθn,則
lim
n→∞
Sn
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個(gè)幾何體的正視圖和俯視圖如圖所示,正視圖是邊長(zhǎng)為2a 的正三角形,俯視圖是邊長(zhǎng)為a 的正六邊形,則該幾何體的側(cè)視圖的面積為(  )
A、
3
2
a2
B、
3
2
a2
C、3a2
D、
3
a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C1:x2+y2-2mx+5=0上存在兩點(diǎn)A,B關(guān)于直線3x-2y-m2=0對(duì)稱,則雙曲線C2
x2
6+m
-
y2
16
=1
的頂點(diǎn)到漸近線的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)O是△ABC的重心,a,b,c分別為角A,B,C的對(duì)邊,已知b=2,c=
7
,則
BC
AO
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的頂點(diǎn)A(2,-1),B(4,3),C(4,-2),求:
(1)BC邊上中線AD所在直線的一個(gè)方向向量的坐標(biāo)
(2)∠A的平分線AM所在直線的一個(gè)方向向量的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an }中,a2+a6=6,Sn 為其前n 項(xiàng)和,S5=
35
3

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=
1
an-1an
(n≥2),b1=3,Sn=b1+b2+…+bn,若Sn<m 對(duì)一切n∈N*成立,求最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x|x-a|(a∈R)
(1)若a=2,解關(guān)于x的不等式f(x)<x;
(2)若對(duì)任意的x∈(0,4]都有f(x)<4,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案