曲線f(x)=xsinx在x=
π2
處的切線方程為
x-y=0
x-y=0
分析:求導(dǎo)數(shù),確定x=
π
2
處的切線的斜率,即可求得切線方程.
解答:解:求導(dǎo)數(shù)可得f′(x)=sinx+xcosx,
x=
π
2
時(shí),f′(
π
2
)=1
又∵f(
π
2
)=
π
2

∴曲線f(x)=xsinx在x=
π
2
處的切線方程為y-
π
2
=x-
π
2
,即x-y=0
故答案為:x-y=0.
點(diǎn)評(píng):本題考查切線方程,解題的關(guān)鍵是求出切點(diǎn)處切線的斜率,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線f(x)=xsinx+1在點(diǎn)(
π
2
 ,
π
2
+1)
處的切線與直線ax-y+1=0互相垂直,則實(shí)數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知曲線f(x)=xsinx+1在點(diǎn)(
π
2
 ,
π
2
+1)
處的切線與直線ax-y+1=0互相垂直,則實(shí)數(shù)a=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省連云港市高三(上)摸底數(shù)學(xué)試卷(解析版) 題型:填空題

曲線f(x)=xsinx在處的切線方程為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江蘇省南通市如東縣栟茶高級(jí)中學(xué)高考數(shù)學(xué)一模試卷(解析版) 題型:填空題

已知曲線f(x)=xsinx+1在點(diǎn)處的切線與直線ax-y+1=0互相垂直,則實(shí)數(shù)a=   

查看答案和解析>>

同步練習(xí)冊答案