給定橢圓C:,若橢圓C的一個焦點為F(,0),其短軸上的一個端點到F的距離為.
(I)求橢圓C的方程;
(II)已知斜率為k(k≠0)的直線l與橢圓C交于不同的兩點A,B,點Q滿足且=0,其中N為橢圓的下頂點,求直線在y軸上截距的取值范圍.
(I) .(II).(III)直線縱截距的范圍是.
【解析】
試題分析:(I)由題意聯(lián)立方程組
由得,
根據(jù),即可得到的取值范圍是.
(II)設(shè)直線方程為,
通過聯(lián)立
設(shè)應用韋達定理,結(jié)合得為的中點, ,
得到,可建立的方程, 從而由得到使問題得解.
試題解析:(I)由題意知.
由得,
所以,解得,
所以求的取值范圍是.
(II)設(shè)直線方程為,
由整理得,
化簡得
設(shè)
則
由得為的中點,所以
因為,所以
即,化簡得
又,
所以
又,所以
.
考點:橢圓的定義、標準方程,直線與橢圓的位置關(guān)系.
科目:高中數(shù)學 來源: 題型:
x2 |
a2 |
y2 |
b2 |
a2+b2 |
2 |
3 |
2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
若給定橢圓C:ax2+by2=1(a>0,b>0,ab)和點N(x0,y0),則稱直線l:ax0x+by0y=1為橢圓C的“伴隨直線”,
(1)若N(x0,y0)在橢圓C上,判斷橢圓C與它的“伴隨直線”的位置關(guān)系(當直線與橢圓的交點個數(shù)為0個、1個、2個時,分別稱直線與橢圓相離、相切、相交),并說明理由;
(2)命題:“若點N(x0,y0)在橢圓C的外部,則直線l與橢圓C必相交.”寫出這個命題的逆命題,判斷此逆命題的真假,說明理由;
(3)若N(x0,y0)在橢圓C的內(nèi)部,過N點任意作一條直線,交橢圓C于A、B,交l于M點(異于A、B),設(shè),,問是否為定值?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2011屆湖北省黃岡中學高三5月模擬考試理科數(shù)學 題型:解答題
(本小題滿分13分)
給定橢圓,稱圓心在坐標原點,半徑為的圓是橢圓的“伴隨圓”. 若橢圓C的一個焦點為,其短軸上的一個端點到距離為.
(Ⅰ)求橢圓及其“伴隨圓”的方程;
(Ⅱ)若過點的直線與橢圓C只有一個公共點,且截橢圓C的“伴隨圓”所得的弦長為,求的值;
(Ⅲ)過橢圓C“伴橢圓”上一動點Q作直線,使得與橢圓C都只有一個公共點,試判斷直線的斜率之積是否為定值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年湖北省高三5月模擬考試理科數(shù)學 題型:解答題
(本小題滿分13分)
給定橢圓,稱圓心在坐標原點,半徑為的圓是橢圓的“伴隨圓”. 若橢圓C的一個焦點為,其短軸上的一個端點到距離為.
(Ⅰ)求橢圓及其“伴隨圓”的方程;
(Ⅱ)若過點的直線與橢圓C只有一個公共點,且截橢圓C的“伴隨圓”所得的弦長為,求的值;
(Ⅲ)過橢圓C“伴橢圓”上一動點Q作直線,使得與橢圓C都只有一個公共點,試判斷直線的斜率之積是否為定值,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com