數(shù)列{an}的前n項(xiàng)和為Sn=npan(n∈N*)且a1≠a2,
(1)求常數(shù)p的值;
(2)證明:數(shù)列{an}是等差數(shù)列.
分析:(1)由題設(shè)條件知若p=1時,a
1=a
2,與已知矛盾,故p≠1.則a
1=0.n=2時,(2p-1)a
2=0.所以p=
.
(2)由題設(shè)條件知
=
.則
=
,
=
.由此可知{a
n}是以a
2為公差,以a
1為首項(xiàng)的等差數(shù)列.
解答:解:(1)當(dāng)n=1時,a
1=pa
1,若p=1時,a
1+a
2=2pa
2=2a
2,
∴a
1=a
2,與已知矛盾,故p≠1.則a
1=0.
當(dāng)n=2時,a
1+a
2=2pa
2,∴(2p-1)a
2=0.
∵a
1≠a
2,故p=
.
(2)由已知S
n=
na
n,a
1=0.
n≥2時,a
n=S
n-S
n-1=
na
n-
(n-1)a
n-1.
∴
=
.則
=
,
=
.
∴
=n-1.∴a
n=(n-1)a
2,a
n-a
n-1=a
2.
故{a
n}是以a
2為公差,以a
1為首項(xiàng)的等差數(shù)列.
點(diǎn)評:本題為“Sn?an”的問題,體現(xiàn)了運(yùn)動變化的思想.