分析 由已知利用余弦定理可求BC的值,進而可求DC的值,再次利用余弦定理即可求得AD的值.
解答 解:在△ABC中,∵∠ACB=$\frac{π}{3},AB=\sqrt{7}$,AC=3,
∴由余弦定理AB2=AC2+BC2-2AC•BC•sin∠ACB,可得:7=9+BC2-2×3×BC×$\frac{1}{2}$,整理可得:BC2-3BC+2=0,
∴解得:BC=2或1,
∵D為線段BC上一點(不能與端點重合),可知,BC≠1,
∴BC=2,CD=BC-BD=2-1=1,
∴由余弦定理可得:AD=$\sqrt{A{C}^{2}+C{D}^{2}-2AC•CD•cos∠ACB}$=$\sqrt{9+1-2×3×1×\frac{1}{2}}$=$\sqrt{7}$.
故答案為:$\sqrt{7}$.
點評 本題主要考查了余弦定理在解三角形中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{12}{13}$ | B. | $-\frac{12}{13}$ | C. | $-\frac{5}{13}$ | D. | $\frac{5}{13}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|2<x<4} | B. | {0,2,3} | C. | {2,3} | D. | {x|2<x<3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 1 | C. | 0 | D. | -1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com