分析 (1)把ρ2=x2+y2,x=ρcosθ,代入曲線C1的極坐標(biāo)方程可得直角坐標(biāo)方程.
(2)由曲線C2的參數(shù)方程可知:此條直線經(jīng)過原點(diǎn),傾斜角為$\frac{π}{6}$,因此C2的極坐標(biāo)方程為θ=$\frac{π}{6}$或θ=$\frac{7π}{6}$,(ρ>0).分別代入C1的極坐標(biāo)方程即可得出.
解答 解:(1)將$\left\{\begin{array}{l}{{ρ}^{2}={x}^{2}+{y}^{2}}\\{ρcosθ=x}\end{array}\right.$代入ρ2-4ρcos θ+3=0得:(x-2)2+y2=1.
(2)由題設(shè)可知,C2是過坐標(biāo)原點(diǎn),傾斜角為$\frac{π}{6}$的直線,
因此C2的極坐標(biāo)方程為θ=$\frac{π}{6}$或θ=$\frac{7π}{6}$,ρ>0,
將θ=$\frac{π}{6}$代入C1:ρ2-2$\sqrt{3}$ρ+3=0,解得:ρ=$\sqrt{3}$.
將θ=$\frac{7π}{6}$代入C1得ρ=-$\sqrt{3}$,不合題意.
故C1,C2公共點(diǎn)的極坐標(biāo)為($\sqrt{3}$,$\frac{π}{6}$).
點(diǎn)評(píng) 本題考查了直角坐標(biāo)與極坐標(biāo)的互化、參數(shù)方程化為普通方程、曲線的交點(diǎn),考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
年份 | 2010 | 2011 | 2012 | 2013 | 2014 |
時(shí)間代號(hào)t | 1 | 2 | 3 | 4 | 5 |
儲(chǔ)蓄存款y(千元) | 5 | 6 | 7 | 8 | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-5)∪(5,+∞) | B. | (-∞,-5)∪[5,+∞) | C. | (-∞,-5]∪[5,+∞) | D. | (-∞,-5]∪(5,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0<m<1或m<0 | B. | 0<m<1 | C. | m<1 | D. | m≤1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com