分析 (Ⅰ)根據(jù)韋達(dá)定理求出a,b的值即可;
(Ⅱ)得到B⊆A,通過討論B是∅和B不是∅,得到關(guān)于a的不等式組,解出即可.
解答 解:(Ⅰ)由題意:x2-ax+b<0的解為-1<x<3,
所以:x2-ax+b=0,的解為x=-1,x=3,
即韋達(dá)定理有:a=-1+3=2;b=-1×3=-3…(5分)
(Ⅱ)由于(A∩B)⊆B,
又因?yàn)椋ˋ∩B)?B所以(A∩B)=B,
即:B⊆A,
。┊(dāng)B=∅時(shí),x2-ax+3<0無解,
即△≤0,所以a2-12≤0,即$-2\sqrt{3}≤a≤2\sqrt{3}$;
ⅱ)當(dāng)B≠∅時(shí),且B⊆A,
只要方程x2-ax+3=0的兩個(gè)不等的實(shí)數(shù)根在[-1,3]內(nèi)即可,
令f(x)=x2-ax+3
則$\left\{{\begin{array}{l}{△>0}\\{-1<\frac{a}{2}<3}\\{f(-1)≥0}\\{f(3)≥0}\end{array}}\right.$,解得:$2\sqrt{3}<a≤4$,
綜上所述:a的取值范圍$[-2\sqrt{3},4]$…(12分)
點(diǎn)評(píng) 本題考查了集合的運(yùn)算,考查韋達(dá)定理以及二次函數(shù)的性質(zhì),是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{5}{2}$,$\frac{10}{3}$) | B. | ($\frac{10}{3}$,+∞) | C. | [$\frac{10}{3}$,+∞) | D. | [2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $2\sqrt{3}+2$ | B. | $\sqrt{3}+1$ | C. | $2\sqrt{3}-2$ | D. | $\sqrt{3}-1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | ±2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x+y+1=0 | B. | x+y-1=0 | C. | x-y+1=0 | D. | x-y-1=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com