設α、β、γ為兩兩不重合的平面,l、m、n為兩兩不重合的直線,給出下列四個命題:
①若α⊥γ,β⊥γ,則α∥β;
②若m?α,n?α,m∥β,n∥β,則α∥β;
③若α∥β,l?α,則l∥β;
④若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,則m∥n.
其中真命題的個數(shù)是( )
A.1
B.2
C.3
D.4
【答案】分析:由空間中面面平面關系的判定方法,線面平等的判定方法及線面平行的性質定理,我們逐一對四個答案進行分析,即可得到答案.
解答:解:若α⊥γ,β⊥γ,則α與β可能平行也可能相交,故①錯誤;
由于m,n不一定相交,故α∥β不一定成立,故②錯誤;
由面面平行的性質定理,易得③正確;
由線面平行的性質定理,我們易得④正確;
故選B
點評:在判斷空間線面的關系,熟練掌握線線、線面、面面平行(或垂直)的判定及性質定理是解決此類問題的基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

13、設α,β,γ為兩兩不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個命題:
①若α⊥γ,β⊥γ,則α∥β;
②若α∥β,l?α,則l∥β;
③若m?α,n?α,m∥β,n∥β,則α∥β;
④若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,則m∥n.
其中命題正確的是
②④
(填序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

8、設α、β、γ為兩兩不重合的平面,l、m、n為兩兩不重合的直線,給出下列四個命題:
①若α⊥γ,β⊥γ,則α∥β;
②若m?α,n?α,m∥β,n∥β,則α∥β;
③若α∥β,l?α,則l∥β;
④若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,則m∥n.
其中真命題的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設α,β,γ為兩兩不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個命題:
①若m?α,n?α,m∥β,n∥β,則α∥β;
②若α∥β,l?α,則l∥β;
③若α∩β=l,β∩γ=m,γ∩α=n,l∥m,則 m∥n;
④若α⊥γ,β⊥γ,則α∥β;
則其中所有正確命題的序號是
②③
②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設α,β,γ為兩兩不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個命題:
①若α⊥γ,β⊥γ,則α∥β;
②若m?α,n?α,m∥β,n∥β,則α∥β;
③若α∥β,l?α,則l∥β;
④若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,則m∥n.
其中正確命題是
③④
③④
 (填寫序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知a,b,c為兩兩不相等的實數(shù),求證:a2+b2+c2>ab+bc+ca;
(2)設a,b,c∈(0,+∞),且a+b+c=1,求證(
1
a
-1)(
1
b
-1)(
1
c
-1)≥8

查看答案和解析>>

同步練習冊答案