2.畢業(yè)臨近,5位同學(xué)按順序站成一排合影留念,其中2位女同學(xué),3位男同學(xué),則女生甲不站兩端,3位男同學(xué)有且只有2位相鄰的排法總數(shù)有(  )種.
A.24B.36C.48D.60

分析 從3名男生中任取2人看做一個(gè)元素,剩下一名男生記作B,兩名女生分別記作甲、乙,則女生甲必須在A、B之間,最后再在排好的三個(gè)元素中選出四個(gè)位置插入乙.

解答 解:從3名男生中任取2人“捆”在一起記作A,
A共有C32A22=6種不同排法,
剩下一名男生記作B,兩名女生分別記作甲、乙;
則女生甲必須在A、B之間
此時(shí)共有6×2=12種排法(A左B右和A右B左)
最后再在排好的三個(gè)元素中選出四個(gè)位置插入乙,
∴共有12×4=48種不同排法.
故選C.

點(diǎn)評(píng) 本題考查的是排列問(wèn)題,這是比較典型的排列題目,題目中有限制的條件有兩個(gè),注意解題時(shí)要分清兩個(gè)條件所指.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知過(guò)原點(diǎn)的動(dòng)直線與圓${C_1}:{x^2}+{y^2}-6x+5=0$相交于不同的兩點(diǎn)A,B.
(1)求線段AB的中點(diǎn)M的軌跡C的方程;
(2)是否存在實(shí)數(shù),使得直線L:y=k(x-4)與曲線C只有一個(gè)交點(diǎn):若存在,求出的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.為了解適齡公務(wù)員對(duì)開(kāi)放生育二胎政策的態(tài)度,某部門(mén)隨機(jī)調(diào)查了90位三十歲到四十歲的公務(wù)員,得到如下列聯(lián)表,因不慎丟失部分?jǐn)?shù)據(jù).
(1))完成表格數(shù)據(jù),判斷是否有99%以上的把握認(rèn)為“生二胎意愿與性別有關(guān)”并說(shuō)明理由;
(2)已知15位有意愿生二胎的女性公務(wù)員中有兩位來(lái)自省婦聯(lián),該部門(mén)打算從這15位有意愿生二胎的女性公務(wù)員中隨機(jī)邀請(qǐng)兩位來(lái)參加座談,設(shè)邀請(qǐng)的2人中來(lái)自省婦聯(lián)的人數(shù)為X,求X的分布列及數(shù)學(xué)期望E(X).
男性公務(wù)員女性公務(wù)員總計(jì)
有意愿生二胎1545
無(wú)意愿生二胎25
總計(jì)
P(k2≥k00.0500.0100.001
k03.8416.63510.828
附:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=|x|+$\frac{m}{x}$-1(x≠0).
(1)當(dāng)m=5時(shí),判斷f(x)在(-∞,0)的單調(diào)性,并用定義證明;
(2)若對(duì)任意x∈R,不等式f(2x)>0恒成立,求m的取值范圍;
(3)討論f(x)零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,在四棱錐S-ABCD中,底面ABCD是直角梯形,側(cè)棱SA⊥底面ABCD,AB垂直于AD和BC,SA=AB=BC=2,AD=1.M是棱SB的中點(diǎn).
(Ⅰ)求證:AM∥平面SCD;
(Ⅱ)求證:平面SDC⊥平面SBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知點(diǎn)(1,-2)在拋物線y=ax2的準(zhǔn)線上,則a的值為( 。
A.$\frac{1}{8}$B.-$\frac{1}{8}$C.8D.-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知向量$\overrightarrow{OM}=(3,-2),\overrightarrow{ON}=(-5,-1),則\overrightarrow{MN}等于$( 。
A.(8,-1)B.(-8,1)C.(-2,-3)D.(-15,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.(1)等差數(shù)列{an}的各項(xiàng)均為正數(shù),a1=3,前n項(xiàng)和為Sn,S10=120,求an;
(2)已知函數(shù)f(x)=2$\sqrt{3}$sinxcosx+2cos2x-1,-$\frac{π}{6}$≤x≤$\frac{π}{3}$,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知側(cè)棱與底面垂直的三棱柱ABC-A1B1C1滿足AA1=2AB=2BC=4,∠ABC=90°,則其外接球的表面積為24π.

查看答案和解析>>

同步練習(xí)冊(cè)答案