10.已知{an}為等比數(shù)列,若a4+a6=8,則a1a7+2a3a7+a3a9=64.

分析 由a1a7+2a3a7+a3a9=${{a}_{4}}^{2}$+2a4a6+${{a}_{6}}^{2}$=(a4+a62,能求出結(jié)果.

解答 解:∵{an}為等比數(shù)列,若a4+a6=8,
∴a1a7+2a3a7+a3a9=${{a}_{4}}^{2}$+2a4a6+${{a}_{6}}^{2}$=(a4+a62=64.
故答案為:64.

點(diǎn)評(píng) 本題考查等比數(shù)列的應(yīng)用,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等比數(shù)列的通項(xiàng)公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知集合$A=\{x|\frac{x-1}{x+2}≤0\},B=\{x|y=lg(-{x^2}+4x+5)\}$,則A∩(∁RB)=( 。
A.(-2,-1]B.[-2,-1]C.(-1,1]D.[-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列函數(shù)中在區(qū)間[-1,+∞)上為增函數(shù)的是( 。
A.y=$\sqrt{x+1}$B.y=(x-1)2C.y=|x-2|D.y=-x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.△ABC的三邊a,b,c所對(duì)的角分別為A,B,C.若A:B=1:2,sinC=1,則a:b:c=( 。
A.1:2:1B.1:2:3C.2:$\sqrt{3}$:1D.1:$\sqrt{3}$:2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.對(duì)于三次函數(shù)$f(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+3x-\frac{5}{12}$,則$f(0)+f(\frac{1}{2017})+f(\frac{2}{2017})+$…$+f(\frac{2015}{2017})+f(\frac{2016}{2017})+f(1)$=2018.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知命題p:“$\frac{2{x}^{2}}{m}$+$\frac{{y}^{2}}{m-1}$=1是焦點(diǎn)在x軸上的橢圓的標(biāo)準(zhǔn)方程”,命題q:?x1∈R,8x12-8mx1+7m-6=0.若p∨q為真命題,p∧q為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列函數(shù)中,既是偶函數(shù)又存在零點(diǎn)的是( 。
A.y=cos xB.y=sin xC.y=ln xD.y=x2+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.△ABC的內(nèi)角A,B,C所對(duì)的邊為a,b,c,已知$a=\sqrt{3}+1,b=\sqrt{3}-1$,C=120°,則c=( 。
A.$\sqrt{10}$B.$\sqrt{6}$C.3D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知圓C與兩坐標(biāo)軸都相切,圓心C到直線y=-x的距離等于$\sqrt{2}$.
(1)求圓C的方程;
(2)若直線l與x軸正半軸與y正半軸分別交于A(m,0),B(0,n)兩點(diǎn)(m>2,n>2),且直線l與圓C相切,求三角形AOB面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案